首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
李静  冯欣  魏子栋 《电化学》2018,24(6):589
质子交换膜燃料电池中,空气电极上进行的氧还原反应动力学过程迟缓,是贵金属铂催化剂的主要消耗反应,但铂储量有限、成本过高、稳定性差等缺点严重制约了质子交换膜燃料电池大规模商业化应用. 开发低载量、高催化活性、高稳定铂催化剂是降低燃料电池成本的重要途径之一. 本文以作者课题组近年工作为基础,综述了铂基催化剂的稳定性研究,以及以铂合金为代表的低铂氧还原反应催化剂的最新研究进展. 文章重点讨论了催化剂的结构设计与制备,并对未来氧还原催化剂的发展提出了展望  相似文献   

2.
氧电极催化剂及缓慢的阴极氧还原动力学是制约低温燃料电池商业化的关键瓶颈因素之一。为此,国内外研究者近年来从提高低温燃料电池氧电极催化剂的催化活性和稳定性、降低催化剂的成本、发展非贵金属氧还原催化剂等方面开展了大量的研究工作,有力地促进了低温燃料电池的发展进程。本文在简要介绍低温燃料电池氧电极反应机理的基础上,从催化剂载体、贵金属及其合金催化剂、金属大环化合物及M-N/C类催化剂和过渡金属硫族化合物类催化剂等方面详细综述了低温燃料电池氧电极催化剂近年来的主要研究进展,并指出了各类催化剂目前尚待解决的问题和发展方向。  相似文献   

3.
应用于氧还原电极的新型Co-PAn-C复合催化材料   总被引:1,自引:1,他引:0  
吕董  周德璧  胡建文 《化学学报》2008,66(4):403-407
借鉴美国Los Alamos国家实验室报告的应用于燃料电池氧电极的新型Co-PPy-C (PPy, polypyrrole)复合物催化材料, 提出Co-PAn-C (PAn, polyaniline)复合材料可能对氧的电化学还原也具有催化活性, 并首次制备出Co-PAn-C复合催化材料. 发现Co-PAn-C对氧还原有显著的催化效果, 碱性介质中氧气气氛下, 电极电位为-0.2 V vs. Hg/HgO时电流密度达到128 mA•cm-2, 性能也比较稳定. 初步研究了Co-PAn-C对ORR (oxygen reduction reaction)的催化机理, 可能是在结构中形成了Co-N活性位置, 影响了氧和反应中间产物在电极上的吸附和脱附过程.  相似文献   

4.
王尧  魏子栋 《电化学》2018,24(5):427
过渡金属氧化物(TMOs)是阴离子交换膜燃料电池最有前途的氧还原催化剂之一. 目前,TMOs的氧还原活性同铂基催化剂相比仍然有一定的差距,研究如何合成具有高催化活性的TMOs催化剂非常重要. 导电性和本征活性一直被认为是开发高性能TMOs催化剂的两个关键因素,本文着重总结与评述了近年来有关TMOs氧还原催化剂在导电性和本征活性方面的研究进展,尝试提出了未来提高TMOs氧还原催化活性的努力方向.  相似文献   

5.
董以宁  李赫  宫雪  韩策  宋平  徐维林 《应用化学》2023,(8):1077-1093
对绿色、高效能源储存装置日趋强烈的需求,使得用于清洁能源转换的先进技术获得了研究者的密切关注。具有环境友好、高能量转换效率等优势的燃料电池是传统能源转换装置极具希望的替代品。然而,工业催化界中商业化程度高的Pt体系催化剂存在成本高、稳定性差和抗毒化能力弱等问题,限制了燃料电池的进一步发展。开发储量丰富、成本低廉且性能优异的非Pt体系氧还原(ORR)催化剂是降低燃料电池成本,促进其大规模应用的有效途径。对此,结合近10年来国内外研究成果,系统介绍了当前各类非Pt体系ORR催化剂的研究进展,包括非贵金属基以及非金属基催化剂。同时,针对各类催化剂的优点、不足及改性策略进行了归纳与总结,并对未来ORR电催化剂的发展提出挑战、做出展望。  相似文献   

6.
利用旋转圆盘电极体系系统研究了不同pH下氧气在多晶Au电极上的还原反应,并计算了不同pH条件及不同超电势范围内的Tafel斜率.研究发现,同在酸性(但是pH不同)或同在碱性(但是pH不同)的介质中氧还原起始电位以及纯粹动力学控制区(电流较小的区域)的氧还原电流几乎不随溶液的pH值而变化.酸性条件下以及碱性条件的高超电势范围内,Tafel斜率接近120mV/dec;而碱性条件的低超电势范围内,Tafel斜率接近60mV/dec.金电极上ORR的活化超电势随着pH值的增加而降低约79mV/pH.初步讨论了pH对氧还原机理和动力学的影响及其内在原因.  相似文献   

7.
杜诚  高小惠  陈卫 《催化学报》2016,(7):1049-1061
面对日益严重的全球能源危机,燃料电池作为一种清洁的能源转换装置在全世界范围内得到了广泛关注。燃料电池是一种能够使氢气、甲醇、甲酸和乙醇等小分子燃料和氧气发生氧化还原反应,并将其化学能转换为电能的新型装置。在燃料电池中,由于在阴极发生的氧气还原反应动力学速率缓慢而使得燃料电池的整体转换效率过低,目前商用的燃料电池一般采用贵金属铂作为催化剂来加速其反应。但由于铂的价格高昂且在反应过程中易被反应中间产物毒化而活性下降,使得燃料电池的整体成本过高,从而阻碍了燃料电池的实际商业化。为此,人们尝试利用非贵金属催化剂来替代铂基催化剂。找到一种廉价且高效的氧还原催化剂是目前燃料电池发展急需打破的瓶颈问题之一。近年来,人们发现铁、钴、锰等地表储量丰富的金属元素具有较高的氧还原催化活性。然而,作为一种最常见的金属元素,金属铜在氧还原催化剂方面研究较少。人们发现一些生物酶,如虫漆酶、细胞色素c氧化酶等能够高效地催化氧气还原,如虫漆酶在催化氧还原过程中仅表现出约20 mV的过电位,与金属铂(约200 mV)相比基本可忽略。通过研究这些活性生物酶,人们发现其活性中心均为含Cu的物质。进一步研究这些生物酶的活性位点,然后合成不同的铜基纳米材料去模拟酶的活性位点,以期望能够实现经济、高效催化氧还原反应。
  本文总结了基于铜的纳米材料在催化氧还原方面的研究进展,首先介绍了一些氧还原实验测试中的基本概念,主要包括不同电解质条件下氧还原的反应机理以及常用的测试手段和性能评价指标。氧还原催化剂的性能应该综合活性、稳定性、抗毒化能力以及催化剂成本等多个方面来评价与比较。随后,我们概括性地介绍了铜基氧还原催化剂的发展现状。根据铜基催化剂的不同类型,我们主要分为三个部分进行介绍:(1)铜的复合物,这部分主要从模拟虫漆酶和模拟细胞色素c氧化酶两个方面分类介绍;(2)铜的化合物,这部分主要介绍了不同价态的铜的氧化物和铜的硫化物;(3)其它铜基催化剂,这部分主要介绍基于铜的尖晶石结构、有机框架材料及载体负载的铜纳米粒子作为氧还原催化剂,以及铜作为掺杂元素在提高锰的不同氧化物催化活性中的作用。最后,通过综合分析铜基氧还原催化剂的发展历程以及目前燃料电池的研究进展,我们对基于铜的氧还原催化剂的未来发展方向做了一些展望。继续研究、探索酶的氧还原活性位点以及机理依然是重中之重,只有完全理解了酶的催化机理,才能够很好的设计并合成材料来对其活性位点进行模拟,从而制备出高性能且低成本的铜基氧还原催化剂。希望本文能够使读者认识到燃料电池氧还原催化剂的发展现况,以及铜基氧还原催化剂目前存在的问题及其未来的发展方向。  相似文献   

8.
氧还原反应(ORR)是燃料电池和金属空气电池等洁净发电装置中阴极的主要反应,该反应动力学过程慢,电化学极化严重. Pt基电催化剂具有较好的ORR活性,然而Pt资源有限、价格昂贵,研制高活性、低成本的代Pt电催化剂意义重大.经过几十年的探索,研究者发现将含有C, N和Fe等元素的前体进行高温热处理得到的Fe-N-C电催化剂对ORR具有良好的活性,然而在高温热解过程中Fe容易发生聚集而形成大块颗粒,导致Fe的利用率不高,影响了电催化剂的ORR活性.
  本文分别以聚吡咯和乙二胺四乙酸二钠(EDTA-2Na)为C和N的前驱体,利用高温热解形成的富含微孔的碳材料对铁前体的吸附及锚定作用,获得了一种Fe高度分散的Fe-N-C电催化剂.采用物理吸脱附技术、高分辨透射电镜(HRTEM)和扫描电镜对Fe-N-C及其制备过程中相关电催化剂的孔结构及表面形貌进行了表征.结果表明,在第一步热解过程中, EDTA-2Na的Na对碳材料起到了活化作用,形成富含微孔的N掺杂碳材料(N-C-1),其BET比表面积达到1227 m2/g,孔径约1.1 nm.在第二步热解过程中, N-C-1有效地抑制了Fe的聚集,产物Fe-N-C中的Fe元素均匀地分布在碳材料中,其比表面积高达1501 m2/g.
  电化学测试结果表明,在碱性介质(0.1 mol/L NaOH)中, Fe-N-C电催化剂对ORR具有良好的催化活性, ORR起始电位(Eo)为1.08 V (vs. RHE),半波电位(E1/2)0.88 V,电子转移数n接近4, H2O2产率<3%,与商品20%Pt/C(Johnson Matthey)接近.电化学加速老化测试结果表明, Fe-N-C的E1/2未发生明显变化,而Pt的负移45 mV,表明Fe-N-C具有很好的稳定性;在酸性介质(0.1 mol/L HClO4)中, Fe-N-C的Eo为0.85 V, E1/2为0.75 V,其E1/2比Pt/C负移约0.15 V,表明在酸性介质中Fe-N-C对ORR的催化活性还有待提高.采用TEM、X射线衍射、X射线光电子能谱以及穆斯堡尔谱等方法研究了电催化剂构效关系.结果表明, Fe-N-C较好的ORR活性主要来自于高分散的Fe-N4结构,此外, N(吡啶N和石墨N)掺杂的C也对反应具有一定的催化活性.
  与Pt/C相比, Fe-N-C电催化剂具有很好的耐甲醇性能.本文对比了Fe-N-C和Pt/C作为阴极催化剂的直接醇类燃料电池(DMFC)性能,采用质子交换膜的DMFC最大功率密度分别为47(Fe-N-C)和79 mW/cm2(Pt/C),而采用碱性电解质膜的则分别为33(Fe-N-C)和8 mW/cm2(Pt/C).结合半电池结果表明, Fe-N-C电催化剂在碱性介质中具有比Pt更为优秀的催化活性和稳定性,有望用作DMFC阴极代Pt催化剂.  相似文献   

9.
RuxCoySez纳米簇合物对阴极氧还原反应的催化性能   总被引:1,自引:0,他引:1  
以Ru3(CO)12、Co4(CO)12和Se为原料,采用低温回流技术在1,6-己二醇中合成了RuxCoySez纳米簇合物.利用SEM和XRD测试表征了催化剂的微观形貌和相结构,催化剂粉末以六方结构的Rux簇为主相,同时形成无定形相,呈现高度均匀聚集的纳米颗粒.利用旋转圆盘电极研究了催化剂对氧还原反应电催化活性.在0.5molL-1H2SO4溶液中,RuxCoySez催化剂对氧还原的催化活性和电化学稳定性明显高于RuxSey,开路电位达到0.91V(vs.NHE).  相似文献   

10.
采用阳极氧化铝(AAO)模板法电化学沉积制备了Pt纳米线阵列(Pt NWs)氧还原催化剂, 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学测试对Pt纳米线阵列催化剂的形貌和电催化性能进行了表征. 循环伏安法(CV)研究表明Pt纳米线阵列催化剂的电化学活性面积大于其几何面积; 旋转圆盘电极(RDE)测试研究发现, 制备的Pt纳米线阵列催化剂的氧还原反应(ORR)曲线的半波电势相对Pt/C的有正移, 并且Pt纳米线阵列催化剂的极限扩散电流比Pt/C大.  相似文献   

11.
宋平  阮明波  刘京  冉光钧  徐维林 《电化学》2015,21(2):130-137
目前,燃料电池中广泛使用的Pt基阴极催化剂价格昂贵、资源缺乏,且易中毒,故急需开发廉价、耐用、高效和高耐醇的非铂基阴极氧还原催化剂. 本文阐述了国内外在非铂氧还原催化剂方面的研究,并着重介绍了作者课题组的最新研究进展. 主要集中在非贵金属(Fe)负载和杂原子(F)掺杂的非金属催化剂,力求原料廉价并可提高催化剂的催化活性、稳定性、抗毒化能力,实现较高的性价比. 同时通过理论计算解释了氟单掺杂和氮氟共掺杂高效性的根源,为设计高效催化剂提供了有力的理论支持.  相似文献   

12.
纳米技术的迅速发展促进了核壳纳米粒子作为一种新型功能材料的产生。通过理性设计核与壳的组成,可以构建一系列具有功能可调性的核壳纳米材料。该类材料可以作为燃料电池中氧还原反应(ORR)的阴极电极,并表现了卓越的电催化性能。本文以不同化学属性为核壳分类,依托ORR机理,综述了近几年核壳结构电极材料在ORR中的应用,提出了存在的挑战,以期为解决能源转换与储存问题提供思路。  相似文献   

13.
质子交换膜燃料电池是一种能够将燃料的化学能直接高效地和环境友好地转化为电能的绿色能源技术。质子交换膜燃料电池具有能量转化效率高、启动快速、零排放或者低排放等优点,被认为是后石油时代最为重要的能源替代技术之一。然而目前使用的电催化剂存在铂用量高和稳定性不足等问题。开发高性能低Pt催化剂对于降低质子交换膜燃料电池成本、促进质子交换膜燃料电池的大规模商业化应用具有十分重要的意义。Pt基金属间化合物是一类具有严格元素化学计量比和规整原子排列结构的合金化合物,其氧还原反应催化活性明显优于相应的Pt基无序合金及纯Pt催化剂,被认为是最具应用前景的低Pt催化剂之一。本文着重从催化机理、制备技术、组成调控、颗粒度调控、形貌调控和晶体结构等几个方面介绍了Pt基金属间化合物催化剂近来的研究进展,以及这类催化剂在质子交换膜燃料电池阴极氧还原反应中的应用研究情况,指出了这类催化剂目前尚存在的不足及挑战,并展望了未来的研究发展思路及方向。  相似文献   

14.
以百里香酚蓝为前驱物,采用硬模版法一步合成硫掺杂的有序介孔碳材料(S-OMC)。在900℃下热解负载百里香酚蓝的介孔二氧化硅SBA-15,获得了具有石墨孔壁结构的有序介孔碳材料(S-OMC-900)。硫元素均匀有效地分布在碳材料介孔孔壁上,并对催化氧还原反应(ORR)起到了关键性作用。S掺杂的有序介孔碳材料的比表面积为1 230 m~2·g~(-1),孔径4.6 nm,有序的孔道结构保证了氧还原反应的物料运输,增大了催化活性。测试结果表明,所制备的S-OMC-900具有良好的催化活性和稳定性。与商业Pt/C比较,S-OMC-900具有更好的甲醇耐受性。  相似文献   

15.
The oxygen reduction reaction in direct glycol fuel cells heavily relies on noble metal-based electrocatalysts. In this work, novel Pt group metal-free catalysts based on porous Fe-N-C materials are successfully synthesized as catalysts with high activity and durability for the cathode oxygen reduction reaction (ORR). Through the encapsulation of NH4SCN salt, the surface elements and pore structure of the catalyst are effectively changed, and the active sites of Fe effectively are increased. The half-wave potential of the best Fe-N-C catalyst was –0.02 V vs. Hg/HgO in an alkaline environment. The porous Fe-N-C catalyst possesses a large specific surface area(1158 m2/g) and shows good activity and tolerance to glycol. The direct glycol fuel cell with the Fe-N-C cathode achieved a maximum power density of 62.2 mW/cm2 with 4 mol/L KOH and 4 mol/L glycol solution at 25 °C and maintained discharge for more than 250 h at a 50 A/cm2 current density.  相似文献   

16.
The oxygen reduction reaction (ORR) is a key step in H2–O2 fuel cells, which, however, suffers from slow kinetics even for state‐of‐the‐art catalysts. In this work, by making use of photocatalysis, the ORR was significantly accelerated with a polymer semiconductor (polyterthiophene). The onset potential underwent a positive shift from 0.66 to 1.34 V, and the current was enhanced by a factor of 44 at 0.6 V. The improvement was further confirmed in a proof‐of‐concept light‐driven H2–O2 fuel cell, in which the open circuit voltage (Voc) increased from 0.64 to 1.18 V, and the short circuit current (Jsc) was doubled. This novel tandem structure combining a polymer solar cell and a fuel cell enables the simultaneous utilization of photo‐ and electrochemical energy, showing promising potential for applications in energy conversion and storage.  相似文献   

17.
The development of a non-noble metal cathode ORR catalyst with low cost, high activity and high stability has become an inevitable trend in MFC. The purpose of this study is to develop an efficient and stable Cu, N-codoped porous carbons catalysts with multi-pore structure for MFC. Herein, Cu, N-codoped porous carbons materials (Cu−NC−T) with high N content and multi-pore structure were successfully developed by co-pyrolysis with MOF-199 and melamine. By contrast, Cu-doped porous carbon (Cu−C−T) without melamine was synthesized using MOF-199 as template. The results showed that Cu−NC−T possessed a rough octahedral crystal with a unique multi-mesopore structure with pore centers of 3.4 nm and 11.2 nm, respectively. Owing to high N content, abundantly exposed Cu−Nx active sites and the multi-pore structure, Cu−NC−800 had a pronounced electrochemical ORR activity in neutral solution (onset potential and limiting current density were 0.161 V and −6.256 mA ⋅ cm−2), which were slightly lower than 20 wt % Pt/C (0.189 V and −6.479 mA ⋅ cm−2). Moreover, the MFC with Cu−NC−800 showed a power density of 662.8±3.6 mW ⋅ m−2, which was higher than that of Cu−C−800 (425.7±3.9 mW ⋅ m−2) and was slightly lower than that 20 wt % Pt/C (815.0±6.2 mW ⋅ m−2). The output voltage of MFC with Cu−NC−T had no obvious decreasing trend in 30 days, demonstrating that the Cu−NC−T had great stability.  相似文献   

18.
以碳黑(Vulcan XC-72R)为载体, 吡啶(Py)和钴酞菁(CoPc)为催化剂前驱体, 经溶剂分散法制备了Py掺杂碳负载纳米钴酞菁复合催化剂(Py-CoPc/C). 通过扫描电镜-能谱分析(SEM-EDS)、X射线光电子能谱(XPS)分析和X射线衍射(XRD)分析技术对催化剂的组成和微观结构进行了表征, 并运用线性扫描循环伏安法(LSV)和旋转圆盘电极(RDE)技术考察了不同Py掺杂含量对碳载钴酞菁(CoPc/C)催化氧还原反应(ORR)活性的影响及稳定性. 结果显示: Py掺杂可以明显改善CoPc/C 对ORR的电催化性能, 其中掺杂20%Py下所制备的20%Py-20%CoPc/C 催化剂对ORR表现出最佳的催化活性, 以其制备的气体扩散电极在O2气氛饱和的0.1 mol·L-1 KOH 电解质溶液中, 0.2 V (相对于标准氢电极)即可产生明显的氧还原电流, 半波电位为-0.03 V. 相比于40%Py/C 和未掺杂的40%CoPc/C, 20%Py-20%CoPc/C催化剂的半波电位分别正移了160 和15 mV. 进一步运用RDE理论研究表明, 在Py-CoPc/C 电极上ORR的电子转移总数为2.38, 高于CoPc/C电极上的电子转移总数1.96, 从而使ORR的选择性明显提高. SEM-EDS和XRD分析表明Py掺杂提高了CoPc/C催化剂的分散性和N含量, 更利于O2的吸附. XPS分析表明: 吡啶结构的N与石墨结构的N均存在于Py-CoPc/C 催化剂中,与催化剂表面的Co离子配位可能是促使ORR活性提高的原因. 最后以20%Py-20%CoPc/C制备了膜电极组装(MEA)电极, 应用于H2/O2 燃料电池单电池发电, 室温下获得最大发电功率密度为21 mW·cm-2, 相对于CoPc/C提高至2.4倍.  相似文献   

19.
质子交换膜燃料电池(PEMFCs)由于高比功率密度、高能量转换效率、环境友好和低温下快速启动等优点受到广泛关注,被认为是替代传统内燃机成为汽车动力的最理想能源转换装置。目前PEMFCs仍需较高载量的贵金属Pt作为电催化剂以保持转换效率,因此,开发低Pt量高活性的电催化剂对PEMFCs技术的商业化进程至关重要。核壳结构催化剂被证明是一种能有效降低电极Pt用量的策略,其既能通过结构优势提高贵金属Pt的利用率,又能通过电子或几何效应改善催化剂的催化活性和稳定性。本文首先简介了PEMFCs阴极氧还原反应(ORR)电催化剂构效关系的理论研究;其次综述了几种典型核壳结构电催化剂应用于ORR的研究进展;最后对ORR低Pt电催化剂的下一步研究方向作了展望。  相似文献   

20.
杂原子掺杂的Fe-NC催化剂在氧还原反应中表现出优异的性能.本工作采用密度泛函理论研究了S原子掺杂对Fe-NC单原子催化剂电子结构的调控及促进氧还原反应的作用机理,分析了硫原子掺杂后Fe-NC催化剂的稳定构型, S原子对FeN4活性位点电子结构的调控,以及氧气的吸附和氧还原反应作用机理.研究结果表明,在FeN4活性位点周围掺杂少量S原子,可以提高催化剂的稳定性. S原子掺杂提高氧还原性能的机理为:(1) S原子的掺杂降低了催化剂的带隙,提高催化剂导电性,有利于电催化氧还原反应;(2) S原子的掺杂可以提高催化剂吸附氧气的能力,有利于氧还原反应;(3)体系中引入四个S原子可以降低氧还原反应的过电位,提高FeN4位点催化氧还原反应的活性.这项工作可能为基于碳材料的单原子催化剂上杂原子掺杂的调控提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号