首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
选用具有高介孔表面积和高导电性能的碳黑Ketjen Black EC 300J(简称KB)作为载体,制备了碳黑负载钴卟啉(CoTMPP/KB),经过900℃热处理后得到电催化剂,用于燃料电池阴极氧还原反应.利用循环伏安法(CV)研究了碳载体不同预处理方法以及高温热处理对碳黑负载钴卟啉电催化剂的氧还原催化性能的影响.结果...  相似文献   

2.
罗瑾  杨乐夫  陈秉辉  钟传建 《电化学》2012,18(6):496-507
质子交换膜燃料电池作为重要的电化学能源转换装置,在提高能量转换效率、减少环境污染等方面具有诱人的前景.然而,阴极氧还原过电位较大、活性较低、稳定性差,且铂基催化剂昂贵,使该燃料电池难以商业化.纳米结构电催化剂的发展有望解决此难题。对纳米合金电催化剂其组分和结构的设计是开发高活性、高稳定性和低成本的燃料电池电催化剂的重要因素.本文综述了近期由分子设计和热化学控制处理法制备的三元纳米合金电催化剂对燃料电池氧还原反应催化性能的最新进展.该方法可控制纳米合金的尺寸、组成以及二元和三元纳米催化剂的合金化程度.以高活性的三元纳米合金催化剂PtNiCo/C为例,综述了在设计燃料电池电催化剂时结构和组成的纳米级调优的重要性.PtNiCo/C电催化剂的质量比活性远高于其二元合金催化剂和Pt/C商业电催化剂.三元电催化剂的催化活性可通过控制其组成来调节.文章还讨论了三元纳米合金催化剂的结构及其协同效应对增强其电催化性能的影响.  相似文献   

3.
面对日益严重的全球能源危机,燃料电池作为一种清洁的能源转换装置在全世界范围内得到了广泛关注.燃料电池是一种能够使氢气、甲醇、甲酸和乙醇等小分子燃料和氧气发生氧化还原反应,并将其化学能转换为电能的新型装置.在燃料电池中,由于在阴极发生的氧气还原反应动力学速率缓慢而使得燃料电池的整体转换效率过低,目前商用的燃料电池一般采用贵金属铂作为催化剂来加速其反应.但由于铂的价格高昂且在反应过程中易被反应中间产物毒化而活性下降,使得燃料电池的整体成本过高,从而阻碍了燃料电池的实际商业化.为此,人们尝试利用非贵金属催化剂来替代铂基催化剂.找到一种廉价且高效的氧还原催化剂是目前燃料电池发展急需打破的瓶颈问题之一.近年来,人们发现铁、钴、锰等地表储量丰富的金属元素具有较高的氧还原催化活性.然而,作为一种最常见的金属元素,金属铜在氧还原催化剂方面研究较少.人们发现一些生物酶,如虫漆酶、细胞色素c氧化酶等能够高效地催化氧气还原,如虫漆酶在催化氧还原过程中仅表现出约20 m V的过电位,与金属铂(约200 m V)相比基本可忽略.通过研究这些活性生物酶,人们发现其活性中心均为含Cu的物质.进一步研究这些生物酶的活性位点,然后合成不同的铜基纳米材料去模拟酶的活性位点,以期望能够实现经济、高效催化氧还原反应.本文总结了基于铜的纳米材料在催化氧还原方面的研究进展,首先介绍了一些氧还原实验测试中的基本概念,主要包括不同电解质条件下氧还原的反应机理以及常用的测试手段和性能评价指标.氧还原催化剂的性能应该综合活性、稳定性、抗毒化能力以及催化剂成本等多个方面来评价与比较.随后,我们概括性地介绍了铜基氧还原催化剂的发展现状.根据铜基催化剂的不同类型,我们主要分为三个部分进行介绍:(1)铜的复合物,这部分主要从模拟虫漆酶和模拟细胞色素c氧化酶两个方面分类介绍;(2)铜的化合物,这部分主要介绍了不同价态的铜的氧化物和铜的硫化物;(3)其它铜基催化剂,这部分主要介绍基于铜的尖晶石结构、有机框架材料及载体负载的铜纳米粒子作为氧还原催化剂,以及铜作为掺杂元素在提高锰的不同氧化物催化活性中的作用.最后,通过综合分析铜基氧还原催化剂的发展历程以及目前燃料电池的研究进展,我们对基于铜的氧还原催化剂的未来发展方向做了一些展望.继续研究、探索酶的氧还原活性位点以及机理依然是重中之重,只有完全理解了酶的催化机理,才能够很好的设计并合成材料来对其活性位点进行模拟,从而制备出高性能且低成本的铜基氧还原催化剂.希望本文能够使读者认识到燃料电池氧还原催化剂的发展现况,以及铜基氧还原催化剂目前存在的问题及其未来的发展方向.  相似文献   

4.
严祥辉  张贵荣  徐柏庆 《催化学报》2013,34(11):1992-1997
经过热解聚苯胺、碳和FeCl3的混合物制备的Fe-N-C材料在酸性电解质中对氧还原反应表现出高的催化活性;由于材料中不存在任何贵金属, 因而被认为是一类新型非贵金属氧还原催化剂. 然而这类催化剂在碱性电解质中催化氧还原反应的性能如何尚不清楚. 本文使用旋转圆盘电极技术考察了制备的两个Fe-N-C催化剂在KOH水溶液中催化氧还原反应性能, 发现这两个催化剂表现出比无金属的N掺杂碳材料更高的活性. 与商业Pt/C催化剂相比, 它们催化氧还原反应的起始电势和半波电势分别仅低60和40 mV左右, 计时电流测试表明, 它们比Pt/C催化剂显示出更好的稳定性. 此外, 在这两个Fe-N-C催化剂上的氧还原反应主要遵循四电子途径. 本工作显示, Fe-N-C材料有望用于碱性燃料电池氧还原反应催化剂.  相似文献   

5.
制约燃料电池产业化的一个因素是其成本问题,尤其是贵金属催化剂的使用.若采用非贵金属催化剂,燃料电池的成本将会大幅降低.本文探索了一种新型非贵金属氧还原催化剂.首次利用微波加热法制备了具有高比表面的纳米碳化钨.XRD结果证明形成了碳化钨晶体,可以得到单纯的W2C或W2C和WC的混合物.通过TEM研究了粉末中碳化钨的颗粒大小和分布状况.结果表明碳化钨在碳载体上分散均匀,颗粒在10 nm左右.电化学表征结果表明碳化钨在碱性环境中对氧还原反应有一定的催化性能.同时证明碳化钨催化的氧还原反应几乎不受甲醇的影响.因此,碳化钨由于其独特的优势而具有在燃料电池中取代贵金属作为催化剂的可能.  相似文献   

6.
在燃料电池阴极氧还原反应以及阳极小分子氧化反应中,结构有序的金属间化合物由于具有可控的组成和结构表现出良好的电催化活性和催化稳定性,受到科研工作者的广泛关注。本文基于课题组多年来在有序金属间化合物电催化剂方面的研究情况,综述了贵金属基有序金属间化合物电催化剂的研究现状。重点介绍了结构有序金属间化合物的结构特点、表征方法、可控制备以及其在燃料电池电催化剂中的应用。此外,对这类材料当前存在的问题以及未来发展方向进行了讨论及展望,以期为燃料电池电催化剂的发展开拓新的思路。  相似文献   

7.
通过液相共沉积技术在PEM燃料电池氧电极的Pt/C电催化剂中引入了Ni和Co两种助催化元素。经氧电极极化实验证明,这种新的电催化剂提高了氧的阴极还原的催化活性。当Ni和Co含量的质量分数分别为0.8%和1%时(以碳为基准),电催化活性较佳。SEM和TEM测试结果表明, Ni、Co助催化元素的引入有利于Pt在载体碳上的分散,减小了Pt的颗粒大小。经过96 h的恒流极化测试,电催化剂的活性没有明显的变化,显示稳定性良好。  相似文献   

8.
王爱丽  孙瑜  梁志修  陈胜利 《化学学报》2009,67(22):2554-2558
以XC-72碳黑为载体, H2[PtCl6]为前驱体, 采用浸渍还原法并结合后续高温处理, 制备出不同尺寸Pt颗粒(3~8 nm)的Pt/C催化剂. 在基于质子交换膜燃料电池(PEMFC)单电池的电化学电解池中, 对实际PEMFC催化层中燃料电池反应的Pt催化剂尺寸效应进行了研究. 结果表明, 在PEMFC催化层环境中, Pt/C纳米催化剂对氢氧化和氧还原反应均有显著的粒度尺寸效应. 随着Pt粒度减小, 氢氧化和氧还原反应的表面积活性均降低.  相似文献   

9.
氧还原反应催化剂的性能直接影响着能源转换和存储器件如燃料电池和金属-空气电池的性能. 开发低成本、高性能的非铂族金属氧还原催化剂对于这类器件的实际应用和商业化十分重要,因此备受关注. 氮掺杂的石墨烯/碳纳米管复合物同时具备碳纳米管的良好导电性能和有利于传质的三维网络结构优点,以及氮掺杂石墨烯的高活性优点,因此有望发展为这类可替代铂族催化剂的氧还原电催化剂之一,但目前其催化性能还需进一步提高. 本文研究发现通过在氮掺杂石墨烯/碳纳米管复合物的过程中引入铁元素可以有效提高催化剂的氧还原活性,并且发现通过在热处理和氮掺杂过程中加入二氧化硅纳米颗粒及随后除去二氧化硅,可以在氮掺杂的石墨烯/碳纳米管复合物材料中有效地形成多孔结构. 这种多孔结构的形成不仅可以在复合物中引入更多的高活性催化位点,而且有利于暴露更多的催化活性位并促进氧还原反应中的传质过程. 结合碳纳米管、石墨烯和多孔结构的三者优点,所制备的多孔氮掺杂碳材料表现出优异的电催化氧还原性能. 进一步的实验表明,这类材料还表现出优异的抗甲醇中毒能力和良好的稳定性,因此在性能改进后有望用于燃料电池等能量转换与存储器件.  相似文献   

10.
杜诚  高小惠  陈卫 《催化学报》2016,(7):1049-1061
面对日益严重的全球能源危机,燃料电池作为一种清洁的能源转换装置在全世界范围内得到了广泛关注。燃料电池是一种能够使氢气、甲醇、甲酸和乙醇等小分子燃料和氧气发生氧化还原反应,并将其化学能转换为电能的新型装置。在燃料电池中,由于在阴极发生的氧气还原反应动力学速率缓慢而使得燃料电池的整体转换效率过低,目前商用的燃料电池一般采用贵金属铂作为催化剂来加速其反应。但由于铂的价格高昂且在反应过程中易被反应中间产物毒化而活性下降,使得燃料电池的整体成本过高,从而阻碍了燃料电池的实际商业化。为此,人们尝试利用非贵金属催化剂来替代铂基催化剂。找到一种廉价且高效的氧还原催化剂是目前燃料电池发展急需打破的瓶颈问题之一。近年来,人们发现铁、钴、锰等地表储量丰富的金属元素具有较高的氧还原催化活性。然而,作为一种最常见的金属元素,金属铜在氧还原催化剂方面研究较少。人们发现一些生物酶,如虫漆酶、细胞色素c氧化酶等能够高效地催化氧气还原,如虫漆酶在催化氧还原过程中仅表现出约20 mV的过电位,与金属铂(约200 mV)相比基本可忽略。通过研究这些活性生物酶,人们发现其活性中心均为含Cu的物质。进一步研究这些生物酶的活性位点,然后合成不同的铜基纳米材料去模拟酶的活性位点,以期望能够实现经济、高效催化氧还原反应。
  本文总结了基于铜的纳米材料在催化氧还原方面的研究进展,首先介绍了一些氧还原实验测试中的基本概念,主要包括不同电解质条件下氧还原的反应机理以及常用的测试手段和性能评价指标。氧还原催化剂的性能应该综合活性、稳定性、抗毒化能力以及催化剂成本等多个方面来评价与比较。随后,我们概括性地介绍了铜基氧还原催化剂的发展现状。根据铜基催化剂的不同类型,我们主要分为三个部分进行介绍:(1)铜的复合物,这部分主要从模拟虫漆酶和模拟细胞色素c氧化酶两个方面分类介绍;(2)铜的化合物,这部分主要介绍了不同价态的铜的氧化物和铜的硫化物;(3)其它铜基催化剂,这部分主要介绍基于铜的尖晶石结构、有机框架材料及载体负载的铜纳米粒子作为氧还原催化剂,以及铜作为掺杂元素在提高锰的不同氧化物催化活性中的作用。最后,通过综合分析铜基氧还原催化剂的发展历程以及目前燃料电池的研究进展,我们对基于铜的氧还原催化剂的未来发展方向做了一些展望。继续研究、探索酶的氧还原活性位点以及机理依然是重中之重,只有完全理解了酶的催化机理,才能够很好的设计并合成材料来对其活性位点进行模拟,从而制备出高性能且低成本的铜基氧还原催化剂。希望本文能够使读者认识到燃料电池氧还原催化剂的发展现况,以及铜基氧还原催化剂目前存在的问题及其未来的发展方向。  相似文献   

11.
The electrochemical oxygen reduction reaction (ORR) is an important cathode reaction of various types of fuel cells. The development of electrocatalysts composed only of abundant elements is a key goal because currently only platinum is a suitable catalyst for ORR. Herein, we synthesized copper‐modified covalent triazine frameworks (CTF) hybridized with carbon nanoparticles (Cu‐CTF/CPs) as efficient electrocatalysts for the ORR in neutral solutions. The ORR onset potential of the synthesized Cu‐CTF/CP was 810 mV versus the reversible hydrogen electrode (RHE; pH 7), the highest reported value at neutral pH for synthetic Cu‐based electrocatalysts. Cu‐CTF/CP also displayed higher stability than a Cu‐based molecular complex at neutral pH during the ORR, a property that was likely as a result of the covalently cross‐linked structure of CTF. This work may provide a new platform for the synthesis of durable non‐noble‐metal electrocatalysts for various target reactions.  相似文献   

12.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in aprotic solvents are elementary reactions for the discharging and charging processes on the cathode of the lithium-oxygen batteries, respectively. Understanding the mechanisms of these reactions at a molecular level has now become a bottleneck that hinders the development of the battery. This short article briefly reviews recent progresses in the studies of the ORR/OER mechanism in aprotic solvents. Two reaction mechanisms, the electrochemical pathway and chemical (disproportionation) pathway, will be discussed with their contribution to the ORR process on the cathode surface. Furthermore, the origin of the OER overpotential will also be discussed. The solutions to reduce the OER overpotential are noted with development of redox mediators.  相似文献   

13.
An electrochemical approach is developed that allows for the control of both proton and electron transfer rates in the O2 reduction reaction (ORR). A dinuclear Cu ORR catalyst was prepared that can be covalently attached to thiol‐based self‐assembled monolayers (SAMs) on Au electrodes using azide–alkyne click chemistry. Using this architecture, the electron transfer rate to the catalyst is modulated by changing the length of the SAM, and the proton transfer rate to the catalyst is controlled with an appended lipid membrane modified with proton carriers. By tuning the relative rates of proton and electron transfer, the current density of the lipid‐covered catalyst is enhanced without altering its core molecular structure. This electrochemical platform will help identify optimal thermodynamic and kinetic parameters for ORR catalysts and catalysts of other reactions that involve the transfer of both protons and electrons.  相似文献   

14.
采用碳纤维超微电极分别研究了O_2在二甲基亚砜、乙腈和四甘醇二甲醚3种有机溶剂中的电化学反应,结果表明,当阳离子只含四丁胺离子时,反应呈可逆的一电子转移;而阳离子只含锂离子时,O_2的还原和氧化均经历了多电子转移过程.利用超导炭黑和乙炔黑制作粉末微电极进行电化学测试,结果表明,在这2种正极材料上,氧气还原反应(ORR)过程相似,氧气生成反应(OER)过程区别明显.此外,Tafel分析结果表明,对于不同有机溶剂和正极材料,O_2还原均经历了初始的一电子转移步骤.  相似文献   

15.
The effect of adsorption on molecular properties and reactivity is a central topic in interfacial physical chemistry. At electrochemical interfaces, adsorbed molecules may lose their electrochemical activity. The absence of in situ probes has hindered our understanding of this phenomenon and electrode reactions in general. In this work, classical electrochemistry and electrochemical scanning tunneling microscopy (EC-STM) were combined to provide molecular level insight into electrochemical reactions and the molecular adsorption state at the electrolyte-electrode interface. The metal-free porphyrin 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP) adsorbed on Au(111) in 0.1 M H(2)SO(4) solution was chosen as a model system. TPyP is found to irreversibly adsorb on Au(111) over a wide range of potentials, from -0.25 to 0.6 V(SCE). The adsorption state of TPyP has a dramatic effect on its electrochemistry. Preadsorbed, oxidized TPyP displays no well-defined cathodic peaks in cyclic voltammograms in sharp contrast to solution-phase TPyP. Our present work provides direct, molecular level evidence of the electrochemically "invisible" species. Electrochemical activity of absorbed species is recovered by allowing the oxidized molecule sufficient time (tens of minutes) to reduce. The redox state of adsorbed TPyP also affects the nature of the adsorption. Oxidized species can apparently only form monolayers. However, multilayers, stable enough to be imaged by STM, can form when the adsorbed TPyP is in the reduced state. This suggests that by controlling the electrochemistry one can either promote or suppress the formation of multilayers.  相似文献   

16.
氧还原反应是决定燃料电池、金属-空气电池等多种新型清洁能源存储与转化技术之性能与应用的关键反应. 铂及其合金是目前催化活性最好的氧还原反应催化剂,但其高昂的成本限制了规模化应用. 在小尺寸效应作用下,微纳米结构催化剂颗粒在电极制备与电化学反应过程中的团聚限制了催化剂本征催化活性的充分发挥. 本文基于喷雾热解技术,发展了一种基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的高活性、抗团聚非贵金属氧还原反应催化剂. 此结构中,金属有机骨架化合物ZIF-67衍生的钴/氮掺杂多孔碳纳米结构是催化氧还原反应的活性中心,包覆其外的三维石墨烯笼不仅可在钴/氮掺杂碳纳米结构之间构建连续的三维载流子传导网络,且可高效抑制其在催化剂制备与电化学反应过程中的团聚与活性损失. 在碱性电解液中,此类非贵金属催化剂表现出可与铂基催化剂媲美的氧还原反应活性和优异的稳定性.  相似文献   

17.
The electrocatalytic activities of nanoporous palladium (npPd) and platinum (npPt) for oxygen reduction reaction (ORR) under alkaline conditions and hydrogen peroxide electrochemical reactions under neutral conditions were examined. npPd and npPt were prepared by the electrochemical deposition of each metal from the corresponding metal precursor in the presence of reverse micelles of Triton X-100, directing highly porous microstructures. The nanoporous catalysts showed excellent electrocatalytic activity for both the ORR and hydrogen peroxide electrochemical oxidation/reduction due to the increased active surface area. In particular, the npPd exhibited superior ORR activity (i.e., more positive onset and half-wave potentials, higher current density and greater number of electrons transferred) despite the smaller roughness factor than the npPt and commercial Pt. The catalytic activity for the hydrogen peroxide electrochemical reactions was also higher while using npPd (i.e., faster electrode reaction kinetics, increased current densities, etc.) compared to npPt. The higher catalytic activity of npPd than that of npPt suggests an advantage of the unique npPd structure, composed of nano- as well as micro-porosity, in facilitating mass transport through the porous metal layer. The npPd exhibited amperometric current responses, induced by the oxidation as well as reduction of hydrogen peroxide, linearly proportional to the hydrogen peroxide concentration with a rapid response time (<~2 s), high sensitivity, and low detection limit (<1.8 μM).  相似文献   

18.
The sluggish kinetics of oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) have always restricted the development of lithium oxygen batteries(LOBs).Herein,hollow carbon spheres loaded with Pd/Pd_4S heterostructure(Pd/Pd_4S@HCS) were successfully prepared via the in-situ deposition to improve the electrocatalytic activities for both ORR and OER in LOBs.With the welldispersed Pd/Pd_4S nanoparticles,the hierarchical composite with large specific surface area offers favorable transport channels for ions,electron and oxygen.Especially,the Pd/Pd_4S nanoparticles could exhibit excellent electrochemical performance for ORR and OER due to their intrinsic catalytic property and interfacial effect from the heterostructure.Therefore,the LOBs with Pd/Pd_4S@HCS as cathode catalyst show improved specific capacities,good rate ability and stable cycling performance.  相似文献   

19.
Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries.The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability.During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts.We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 nanoparticles and graphene oxide, followed by annealing.The 3D graphene cages around Co-N-C nanocomposites not only provide a continuous conductive network for charge transfer, but also prevent the active phase from aggregation during electrode manufacturing and electrochemical reactions.When evaluated as an ORR electrocatalyst, the material exhibited comparable activity but superior stability to commercial Pt/C catalyst in an alkaline electrolyte. © 2018 Chinese Chemical Society. All rights reserved.  相似文献   

20.
Rational designs of electrocatalytic active sites and architectures are of great importance to develop cost-efficient non-noble metal electrocatalysts towards efficient oxygen reduction reaction (ORR) for high-performance energy conversion and storage devices. In this work, active amorphous Fe-based nanoclusters (Fe NC) are elaborately embedded at the inner surface of balloon-like N-doped hollow carbon (Fe NC/Ch sphere) as an efficient ORR electrocatalyst with an ultrathin wall of about 10 nm. When evaluated for electrochemical performance, Fe NC/Ch sphere exhibits decent ORR activity with a diffusion-limited current density of ~5.0 mA/cm2 and a half-wave potential of ~0.81 V in alkaline solution, which is comparable with commercial Pt/C and superior to Fe nanoparticles supported on carbon sheet (Fe NP/C sheet) counterpart. The electrochemical analyses combined with electronic structure characterizations reveal that robust Fe-N interactions in amorphous Fe nanoclusters are helpful for the adsorption of surface oxygen-relative species, and the strong support effect of N-doped hollow carbon is benefitial for accelerating the interfacial electron transfer, which jointly contributes to improve ORR kinetics for Fe NC/Ch sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号