共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected degeneracies. We provide criteria necessary to identify these groups and, as an example, present ab initio calculations of β-cristobalite BiO(2) which exhibits three Dirac points at the Fermi level. We find that β-cristobalite BiO(2) is metastable, so it can be physically realized as a 3D analog to graphene. 相似文献
3.
Junran Zhang Ming Gao Jinglei Zhang Xuefeng Wang Xiaoqian Zhang Minhao Zhang Wei Niu Rong Zhang Yongbing Xu 《Frontiers of Physics》2018,13(1):137201
Topological nodal-line semimetal is a new emerging material, which is viewed as a three-dimensional (3D) analog of graphene with the conduction and valence bands crossing at Dirac nodes, resulting in a range of exotic transport properties. Herein, we report on the direct quantum transport evidence of the 3D topological nodal-line semimetal phase of ZrSiS with angular-dependent magnetoresistance (MR) and the combined de Hass-van Alphen (dHvA) and Shubnikov-de Hass (SdH) oscillations. Through fitting by a two-band model, the MR results demonstrate high topological nodal-line fermion densities of approximately 6×1021 cm−3 and a perfect electron/hole compensation ratio of 0.94, which is consistent with the semi-classical expression fitting of Hall conductance Gxy and the theoretical calculation. Both the SdH and dHvA oscillations provide clear evidence of 3D topological nodal-line semimetal characteristic. 相似文献
4.
YuXing Zhou Bin Li ZheFeng Lou HuanCheng Chen Qin Chen BinJie Xu ChunXiang Wu JianHua Du JinHu Yang HangDong Wang MingHu Fang 《中国科学:物理学 力学 天文学(英文版)》2021,(4)
A feasible strategy for realizing the Majorana fermions is searching for a simple compound with both bulk superconductivity and Dirac surface states.In this paper,we perform calculations of electronic band structure,the Fermi surface,and the surface states,and measure the resistivity,magnetization,and specific heat of a TlSb compound with a CsCl-type structure.The band structure calculations show that TlSb is a Dirac semimetal when spin-orbit coupling is considered.TlSb is first determined to be a type-Ⅱsuperconductor with Tc=4.38 K,Hc1(0)=148 Oe,Hc2(0)=1.12 T,andκGL=10.6.We also confirm that TlSb is a moderately coupled s-wave superconductor.Although we cannot determine the band near the Fermi level EF that is responsible for superconductivity,its coexistence with topological surface states implies that the TlSb compound may be a simple material platform to realize the fault-tolerant quantum computations. 相似文献
5.
Magneto-transport study has been performed in topological semimetal ZrSiS single crystals under high pulsed magnetic fields. Obvious dependence of Landau level splitting on temperature and angular was investigated. The strong three-dimensional anisotropic nature of Landau level splitting under high pulsed magnetic fields was revealed by the angular dependent measurements, in which the orbital contribution is more dominant than Zeeman splitting. Our studies provide more insights into the physical properties of topological semimetals ZrSiS and shed light on future spintronic applications of ZrSiS. 相似文献
6.
Electronic structure,Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na_3Bi from angle-resolved photoemission spectroscopy 下载免费PDF全文
梁爱基 陈朝宇 王志俊 石友国 冯娅 伊合绵 谢卓晋 何少龙 何俊峰 彭莹莹 刘艳 刘德发 胡成 赵林 刘国东 董晓莉 张君 M Nakatake H Iwasawa K Shimada M Arita H Namatame M Taniguchi 许祖彦 陈创天 翁红明 戴希 方忠 周兴江 《中国物理 B》2016,25(7):77101-077101
The three-dimensional(3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A_3Bi(A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission(ARPES) measurements on the two cleaved surfaces,(001) and(100), of Na_3Bi. On the(001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k_x–k_y plane and by varying the photon energy to get access to different out-of-plane k_zs. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the(100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the(100) plane. We directly observe two isolated 3D Dirac nodes on the(100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ~150 me V before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na_3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the3 D Dirac cones, on the possible formation of surface reconstruction of the(001) surface, and on the issue of basic Brillouin zone selection for the(100) surface. 相似文献
7.
《中国光学快报(英文版)》2021,(8)
In this article, we investigate the phenomenon of coherent perfect absorption(CPA) with bulk Dirac semimetal(BDS) thin film. CPA of BDS appears at the frequency of 43.89 THz with 0° phase modulation of two coherent input lights. Meanwhile, it shows that CPA can be realized under oblique incidence circumstances for both TM and TE polarizations. Moreover, the frequency of CPA can be adjusted by altering the thickness of BDS thin film, and the dynamic regulation of CPA can be realized by changing the Fermi energy. Finally, the peak coherent absorption frequency can be controlled by changing the degeneracy factor. 相似文献
8.
9.
JunSen Xiang SiLe Hu Meng Lyu WenLiang Zhu ChaoYang Ma ZiYu Chen Frank Steglich GenFu Chen PeiJie Sun 《中国科学:物理学 力学 天文学(英文版)》2020,(3):82-88
The Seebeck effect encounters a few fundamental constraints hindering its thermoelectric(TE)conversion efficiency.Most notably,there are the charge compensation of electrons and holes that diminishes this effect,and the Wiedemann-Franz(WF)law that makes independent optimization of the corresponding electrical and thermal conductivities impossible.Here,we demonstrate that in the topological Dirac semimetal Cd3As2 the Nernst effect,i.e.,the transverse counterpart of the Seebeck effect,can generate a large TE figure of merit zNT.At room temperature,zNT≈0.5 in a small field of 2 T and it significantly surmounts its longitudinal counterpart for any field.A large Nernst effect is generically expected in topological semimetals,benefiting from both the bipolar transport of compensated electrons and holes and their high mobilities.In this case,heat and charge transport are orthogonal,i.e.,not intertwined by the WF law anymore.More importantly,further optimization of zNT by tuning the Fermi level to the Dirac node can be anticipated due to not only the enhanced bipolar transport,but also the anomalous Nernst effect arising from a pronounced Berry curvature.A combination of the topologically trivial and nontrivial advantages promises to open a new avenue towards high-efficient transverse thermoelectricity. 相似文献
10.
《中国科学:物理学 力学 天文学(英文版)》2021,(3)
Using angle-resolved photoemission spectroscopy(ARPES) and low-energy electron diffraction(LEED), together with densityfunctional theory(DFT) calculation, we report the formation of charge density wave(CDW) and its interplay with the Kondo effect and topological states in CeSbTe. The observed Fermi surface(FS) exhibits parallel segments that can be well connected by the observed CDWordering vector, indicating that the CDWorder is driven by the electron-phonon coupling(EPC) as a result of the nested FS. The CDW gap is large(~0.3 eV) and momentum-dependent, which naturally explains the robust CDWorder up to high temperatures. The gap opening leads to a reduced density of states(DOS) near the Fermi level(E_F), which correspondingly suppresses the many-body Kondo effect, leading to very localized 4 f electrons at 20 K and above. The topological Dirac cone at the X point is found to remain gapless inside the CDW phase. Our results provide evidence for the competition between CDWand the Kondo effect in a Kondo lattice system. The robust CDWorder in CeSbTe and related compounds provide an opportunity to search for the long-sought-after axionic insulator. 相似文献
11.
12.
The exchange field effects on topological Dirac semimetal(DSM) films are discussed in this article. A topological phase transition can be controlled by tuning the exchange field together with the quantum confinement effects. What is more interesting is that the system can transit into the quantum anomalous Hall(QAH) state from the topologically trivial state(Z_2 = 0) or from the topologically nontrivial state(Z_2 = 1), depending on the thickness of the DSM films. This provides a useful mechanism to realize the QAH state from the DSM. 相似文献
13.
Yubo Liang Guangqing Wang Yan Cheng Duo Cao Dejun Yang Xiaoyong He Fangting Lin Feng Liu 《理论物理通讯》2022,74(12):125702
The tunable propagation properties of 3D Dirac semimetal (DSM)-supported dielectric-loaded surface plasmons structures have been investigated in the THz regime, including the influences of the Fermi level of 3D DSM layer, the fiber shape and operation frequencies. The results indicate that the shape of dielectric fiber affects the hybrid mode significantly, on the condition that if ax (the semi-minor axis length of the dielectric semi-ellipse) is relatively small, the fiber shows good mode confinement and low loss simultaneously, and the figure of merit reaches more than 200. The propagation property can be manipulated in a wide range by changing the Fermi level of 3D DSM, e.g. if the Fermi level varies in the range of 0.05 eV–0.15 eV, the propagation length changes in the range of 9.073×103–2.715×104 μm, and the corresponding modulation depth is 66.5%. These results are very helpful to understand the tunable mechanisms of the 3D DSM plasmonic devices, such as switchers, modulators, and sensors. 相似文献
14.
Z. Z. Alisultanov 《JETP Letters》2017,105(7):442-446
The Landau bands in crossed magnetic and electric fields are studied for the case of a Weyl semimetal. The expression for the energy spectrum of such a system is obtained using an approach based on the Lorentz shift. It is shown that the electric field leads to a substantial transformation of the Landau bands. At the electric field equal to vF H/c, the collapse of the Landau levels occurs and the motion becomes completely linear. Under this condition, the wavefunction is nonzero only for the states with p z = 0. This significantly affects the phenomena related to the unusual surface states, which are characteristic of such materials. 相似文献
15.
Quantum transport properties of the three-dimensional Dirac semimetal Cd_3As_2 single crystals 下载免费PDF全文
The discovery of the three-dimensional Dirac semimetals have expanded the family of topological materials,and attracted massive attentions in recent few years.In this short review,we briefly overview the quantum transport properties of a well-studied three-dimensional Dirac semimetal,Cd_3As_2.These unusual transport phenomena include the unexpected ultra-high charge mobility,large linear magnetoresistivity,remarkable Shubnikov-de Hass oscillations,and the evolution of the nontrivial Berry's phase.These quantum transport properties not only reflect the novel electronic structure of Dirac semimetals,but also give the possibilities for their future device applications. 相似文献
16.
17.
Thermoelectrics has long been considered as a promising way of power generation for the next decades. So far,extensive efforts have been devoted to the search of ideal thermoelectric materials, which require both high electrical conductivity and low thermal conductivity. Recently, the emerging Dirac semimetal Cd3As2, a three-dimensional analogue of graphene, has been reported to host ultra-high mobility and good electrical conductivity as metals. Here, we report the observation of unexpected low thermal conductivity in Cd3As2, one order of magnitude lower than the conventional metals or semimetals with a similar electrical conductivity, despite the semimetal band structure and high electron mobility. The power factor also reaches a large value of 1.58 m W·m-1·K-2at room temperature and remains non-saturated up to 400 K.Corroborating with the first-principles calculations, we find that the thermoelectric performance can be well-modulated by the carrier concentration in a wide range. This work demonstrates the Dirac semimetal Cd3As2 as a potential candidate of thermoelectric materials. 相似文献
18.
Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials 下载免费PDF全文
We numerically demonstrated a novel chiral metamaterial to achieve broadband asymmetric transmission (AT) of linearly polarized electromagnetic waves in terahertz (THz) band. The proposed metamaterial unit cell exhibits no rotational symmetry with vanadium dioxide (VO$_{2}$) inclusion embedded between Dirac semimetals (DSMs) pattern. The resonant frequency of AT can be dynamically tunable by varying the Fermi energy ($E_{\rm F}$) of the DSMs. The insulator-to-metal phase transition of VO$_{2}$ enables the amplitude of the AT to be dynamically tailored. The transmission coefficient $|T_{yx}|$ can be adjusted from 0.756 to nearly 0 by modifying the conductivity of VO$_{2}$. Meanwhile, the AT parameter intensity of linearly polarized incidence can be actively controlled from 0.55 to almost 0, leading to a switch for AT. When VO$_{2}$ is in its insulator state, the proposed device achieves broadband AT parameter greater than 0.5 from 1.21 THz to 1.80 THz with a bandwidth of 0.59 THz. When the incident wave propagates along the backward ($-z$) direction, the cross-polarized transmission $|T_{yx}|$ reaches a peak value 0.756 at 1.32 THz, whereas the value of $|T_{xy}|$ well below 0.157 in the concerned frequency. On the other hand, the co-polarized transmission $|T_{xx}|$ and $|T_{yy}|$ remained equal in the whole frequency range. This work provides a novel approach in developing broadband, tunable, as well as switchable AT electromagnetic devices. 相似文献
19.
Chaocheng He 《Physics letters. A》2018,382(6):440-443
We study theoretically the features of impurity-induced states on the surface of a three-dimensional Weyl semimetal in this work. For calculating the impurity-induced local density of states based on T-matrix formulation, we found that for different Weyl semimetal phases the behaviors of a local impurity exhibit distinguishable prominent features for the surface Fermi arc states. Due to two opposite-directional and -chirality surface currents for a surface, a bound state appears at the unitary limit of scattering intensity near the impurity site. Then the resonance condition for different Weyl semimetal phases and scattering intensity is investigated. Our results can be used to identify distinctive topological phases of Weyl semimetal. Furthermore, the relevance of topological nodal-point and -line systems is discussed. Some relation between our theoretical results and current experimental scheme are also discussed. 相似文献
20.
表面抛光可能给K9基片带来额外的杂质和吸收,分离K9基片的表面吸收率与体吸收率有助于改进基片的加工质量和抛光工艺,对抗损伤能力研究具有重要意义。分析了激光量热法测量弱吸收的原理,采用符合ISO 11551要求的激光量热计测量K9基片的弱吸收。对相同工艺抛光的不同厚度K9基片进行了弱吸收表征,实验发现K9基片的弱吸收随着厚度增加近似线性增大。推导了表面吸收率和体吸收率的计算式,实验得出本样品的表面吸收率为1.2110-5,体吸收率远大于表面吸收率,体吸收系数为1.7210-3/cm。实验结果显示所用K9样品的吸收主要来自于材料本身,改善抛光工艺对降低其吸收率作用不大。 相似文献