首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
徐园芬 《物理学报》2013,62(10):100202-100202
利用动力系统方法研究一维Tonks-Girardeau原子气区域中Gross-Pitaevskii (GP)方程简化模型的一些精确行波解以及这些精确行波解的动力学行为, 研究系统的参数对行波解的动力学行为的影响. 在不同的参数条件下, 获得了一维Tonks-Girardeau原子气区域中GP方程简化模型的六个行波解的精确参数表达式. 关键词: 动力系统方法 孤立波解 周期波解 扭波解  相似文献   

2.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

3.
In this paper, we study the bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation by using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the parametric space. Then we show the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, compactions and kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions and periodic wave solutions are implicitly given,while the expressions of kink-like and antikink-like wave solutions are explicitly shown. The dynamics of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of the nonlinear wave.  相似文献   

4.
In this Letter, we investigate the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.  相似文献   

5.
For the (2+1)-Dimensional HNLS equation, what are the dynamical behavior of its traveling wave solutions and how do they depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems. Ten exact explicit parametric representations of the traveling wave solutions are given.  相似文献   

6.
In this paper, we study the higher dimensional nonlinear Rossby waves under the generalized beta effect. Using methods of the multiple scales and weak nonlinear perturbation expansions [Q. S. Liu, et al., Phys. Lett. A 383 (2019) 514], we derive a new $(2+1)$-dimensional generalized Boussinesq equation from the barotropic potential vorticity equation. Based on bifurcation theory of planar dynamical systems and the qualitative theory of ordinary differential equations, the dynamical analysis and exact traveling wave solutions of the new generalized Boussinesq equation are obtained. Moreover, we provide the numerical simulations of these exact solutions under some conditions of all parameters. The numerical results show that these traveling wave solutions are all the Rossby solitary waves.  相似文献   

7.
Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the (3+1)-dimensional Gross-Pitaevskii equation with repulsive harmonic potential. In the limit cases, the solitary wave solutions are obtained as well. We also investigate the dynamical evolution of the solitons with a time-dependent complicated potential.  相似文献   

8.
In this paper, we analyze the relation between the shape of the bounded traveling wave solutions and dissipation coefficient of nonlinear wave equation with cubic term by the theory and method of planar dynamical systems. Two critical values which can characterize the scale of dissipation effect are obtained. If dissipation effect is not less than a certain critical value, the traveling wave solutions appear as kink profile; while if it is less than this critical value, they appear as damped oscillatory. All expressions of bounded traveling wave solutions are presented, including exact expressions of bell and kink profile solitary wave solutions, as well as approximate expressions of damped oscillatory solutions. For approximate damped oscillatory solution, using homogenization principle, we give its error estimate by establishing the integral equation which reflects the relations between the exact and approximate solutions. It can be seen that the error is an infinitesimal decreasing in the exponential form.  相似文献   

9.
We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make contact with the soliton solutions of Coullet [Phys. Rev. Lett. 56, 724 (1986)]] and generalize them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.  相似文献   

10.
Finite-amplitude supernonlinear electron-acoustic waves (EAWs) are investigated under the nonlinear Schrödinger (NLS) equation in a plasma system that is composed of cold electron fluid, immobile ions and q-nonextensive hot electrons. Using the wave transfiguration, the NLS equation is deduced in a dynamical system. The presence of finite-amplitude nonlinear and supernonlinear EAWs is shown by phase plane analysis. The effects of the nonextensive parameter (q) and the speed of waves (v) on different traveling wave solutions of EAWs are presented. Furthermore, by introducing a small external periodic force in the dynamical system, multistability behaviors of EAWs under the NLS equation are shown for the first time in classical plasmas.  相似文献   

11.
In this paper, the Lie symmetry analysis and generalized symmetry method are performed for a short-wave model. The symmetries for this equation are given, and the phase portraits of the traveling wave systems are analyzed using the bifurcation theory of dynamical systems. The exact parametric representations of four types of traveling wave solutions are obtained.  相似文献   

12.
针对一类含无损传输线的约瑟夫森结无穷维电磁系统,运用行波理论推导了电压正向行波分量的Poincaré映射关系,并在此基础上建立了传输线沿线电压的离散映射模型。通过数值计算描绘了传输线沿线电压的空间振幅变化图和时空行为发展图,分析了系统的时空行为随参数变化的动态演化过程。结果表明在一定参数条件下,约瑟夫森结无穷维电磁系统中存在着周期和时空混沌等丰富的非线性动力学行为。  相似文献   

13.
《Physics letters. A》2019,383(36):126028
The theory of bifurcations for dynamical system is employed to construct new exact solutions of the generalized nonlinear Schrödinger equation. Firstly, the generalized nonlinear Schrödinger equation was converted into ordinary differential equation system by using traveling wave transform. Then, the system's Hamiltonian, orbits phases diagrams are found. Finally, six families of solutions are constructed by integrating along difference orbits, which consist of Jacobi elliptic function solutions, hyperbolic function solutions, trigonometric function solutions, solitary wave solutions, breaking wave solutions, and kink wave solutions.  相似文献   

14.
We consider cnoidal traveling wave solutions to the focusing nonlinear Schrödinger equation (NLS) that have been shown to persist when the NLS is perturbed to the complex Ginzburg-Landau equation (CGL). We show that while these periodic traveling waves are spectrally stable solutions of NLS with respect to periodic perturbations, they are unstable with respect to bounded perturbations. Furthermore, we use an argument based on the Fredholm alternative to find an instability criterion for the persisting solutions to CGL.  相似文献   

15.
The nonlinear Schr6dinger equation (NLSE) with variable coefficients in blood vessels is discussed via an NLSE-based constructive method, and exact solutions are obtained including multi-soliton solutions with and without continuous wave backgrounds. The dynamical behaviors of these soliton solutions are studied. The solitonic propagation behaviors such as restraint and sustainment on continuous wave background are discussed by altering the value of dispersion parameter δ. Moreover, the longitude controllable behaviors are also reported by modulating the dispersion parameter & These results are potential1y useful for future experiments in various blood vessels.  相似文献   

16.
We study the stability of traveling wave solutions to a fifth-order water wave model. By solving a constrained minimization problem we show that “ground state” traveling wave solutions exist. Their stability is shown to be determined by the convexity or concavity of a function d(c) of the wave speed c. The analysis makes frequent use of the variational properties of the traveling waves.  相似文献   

17.
We present a four-velocity kinetic model of van der Waals fluids. Although, from the physical point of view this model is very simple, mathematically it is quite complicated. Due to this complexity we performed various simplifications, which are also presented. We look for traveling wave solutions for these simplified versions. A discussion of the types of the states of rest is presented. We pay some attention to the monotonicity of the density component of the traveling wave. Finally, we compare the model's kinetic and hydrodynamic shock wave structures. The new feature is that kinetic effects alone are unable to kill the artificial phenomenon of impending shock splitting.  相似文献   

18.
In this paper we show that non-smooth functions which are distributional traveling wave solutions to the two component Camassa–Holm equation are distributional traveling wave solutions to the Camassa–Holm equation provided that the set u-1(c), where c is the speed of the wave, is of measure zero. In particular there are no new peakon or cuspon solutions beyond those already satisfying the Camassa–Holm equation. However, the two component Camassa–Holm equation has distinct from Camassa–Holm equation smooth traveling wave solutions as well as new distributional solutions when the measure of u-1(c) is not zero. We provide examples of such solutions.  相似文献   

19.
李向正 《物理学报》2012,61(17):170507-170507
为了研究非线性发展方程的有界衰减振荡解,特选取Fisher方程为例. Fisher方程在描述激发介质的非数值模型(如Belousov-Zhabotinsky (BZ)反应)中, 其解的振幅取负值是有意义的.应用平面动力系统理论,研究了Fisher方程有界行波解存在的条件, 利用LS解法和线性化解法给出了其有界衰减振荡解的近似解析表达式,并进行了误差估计.  相似文献   

20.
We study the response of Turing stripe patterns to a simple spatiotemporal forcing. This forcing has the form of a traveling wave and is spatially resonant with the characteristic Turing wavelength. Experiments conducted with the photosensitive chlorine dioxide-iodine-malonic acid reaction reveal a striking symmetry-breaking phenomenon of the intrinsic striped patterns giving rise to hexagonal lattices for intermediate values of the forcing velocity. The phenomenon is understood in the framework of the corresponding amplitude equations, which unveils a complex scenario of dynamical behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号