首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于组合神经网络的雷诺平均湍流模型多次修正方法   总被引:1,自引:0,他引:1  
求解雷诺平均(Reynolds-averaged Navier-Stokes, RANS)方程依然是工程应用中有效且实用的方法, 但对雷诺应力建模的不确定性会导致该方法的预测精度具有很大差异. 随着人工智能的发展, 湍流闭合模型结合机器学习元素的数据驱动方法被认为是提高RANS模型预测性能的有效手段, 然而这种数据驱动方法的稳定性和预测精度仍有待进一步提高. 本文通过构建一个全连接神经网络对RANS方程中的涡黏系数进行预测以实现雷诺应力的隐式求解,该神经网络记作涡黏系数神经网络(eddy viscosity neural network, EVNN). 此外, 也使用张量基神经网络(tensor basis neural network, TBNN)预测未封闭量与解析量之间的高阶涡黏关系, 并利用基张量保证伽利略不变性. 最后, 采用多次修正的策略实现修正模型对流场预测的精度闭环. 上述方法使用大涡模拟(large eddy simulation, LES)方法产生的高保真数据, 以及RANS模拟获得的基线数据对由EVNN和TBNN组合的神经网络进行训练, 然后用训练好的模型预测新的RANS模拟的流场. 通过与高保真LES结果进行对比, 结果表明, 相比于原始RANS模型, 修正模型对后验速度场、下壁面平均压力系数和摩擦力系数的预测精度均有较大提升. 可以发现对雷诺应力线性部分的隐式处理可以增强数值求解的稳定性, 对雷诺应力非线性部分的修正可以提升模型对流场各向异性特征预测的性能, 并且多次修正后的模型表现出更高的预测精度. 因此, 该算法在数据驱动湍流建模和工程应用中具有很大的应用潜力.   相似文献   

2.
针对传统弹载惯性导航系统误差修正采用线性化模型,无法对非线性误差进行修正的缺点,提出一种基于神经网络的GPS深度融合弹载惯导模型。构建IMU六路脉冲数到发射惯性坐标系下视速度增量的非线性映射关系,利用GPS信息对网络误差模型进行训练,为GPS信号失效后的长航时惯性导航系统提供更高精度的误差修正模型。仿真实验结果表明,相较于纯惯性导航系统,所提模型能够在GPS信号失效后抑制惯导系统误差发散,速度精度提高76.56%,位置精度提高91.61%。  相似文献   

3.
针对地理位置未知条件下惯导系统海上启动对准实现问题,提出了基于锚泊条件的惯性/星敏组合导航系统位置未知条件下的海上牵引启动方法。建立了惯性/星敏信息的迭代滤波模型,研究了惯性?/星敏牵引启动方法、分析了自主启动精度、提出了自主启动实现方案。通过惯性基准和星敏感器联合使用,惯性基准辅助星敏感器进行观星定位,观星定位数据对惯性基准平台反馈修正,基于惯性/星敏位置和姿态信息在牵引启动下的相互校准方式,组合系统经过多次迭代修正,构造高精度水平基准,完成惯性/星敏组合系统海上位置未知条件下纬度、经度自估计,实现船舶对准后的正常航行。实验结果表明,采用所提出的惯性/星敏组合系统牵引启动方法获得的经纬度自估计精度与星敏感器的测量精度相当。  相似文献   

4.
提出了一种基于AH(Associated Hermite)正交基函数求解对流扩散方程的无条件稳定算法。该算法将方程的时间项通过Hermite多项式作为正交基函数进行展开,利用Galerkin方法消除时间变量项,从而导出有限维AH域隐式差分方程,突破了传统显式差分格式稳定性条件的限制,最后通过对AH域展开系数的求解得到该对流扩散方程的数值解。在数值算例中,将该算法与传统显示差分法和交替方向隐式差分法进行对比分析,数值计算结果表明,算法无条件稳定且其计算精度与时间步长无关,对于具有精细结构的对流换热问题,该算法具有明显的效率优势,且保持了较高的精度。  相似文献   

5.
惯性平台自标定的标定方案设计目前多是依靠经验人为设计,而没有比较系统的标定方案设计方法,为解决此问题,提出了一种基于D-最优理论的惯性平台自标定方案设计方法。首先分析给出了包含36个待估计参数的平台系统误差模型;然后以陀螺仪和加速度计的输出模型为回归模型,将惯性平台自标定看作一个广义的多元回归问题,以D-最优理论为优化准则,提出了并行设计和串行设计两种标定方案设计思路。将得到的优化方案与传统的十六位置标定方案进行了仿真对比分析,仿真结果表明:优化方案的陀螺仪误差系数、加速度计误差系数和加速度计安装误差系数标定相对误差都在1%以下,与传统十六位置标定方案的标定精度相当;但优化方案的陀螺仪安装误差标定相对误差在5%左右,远远优于传统十六位置标定方案25%的相对误差;而且优化方案的标定位置更少,能够减少标定时间,验证了标定方案设计思路的正确性。  相似文献   

6.
惯性平台系统火箭橇试验数据处理方法   总被引:2,自引:1,他引:1  
火箭橇试验具有产生大过载、高速度、强振动和冲击等综合条件的能力,可以在综合环境条件下对惯性测量装置的功能和精度进行验证.针对惯性平台系统开展了3 km火箭橇轨道的功能验证试验,对振动传感器的数据进行了过载分析和振动量级的谱分析.研究了惯性平台系统火箭橇试验后的数据处理方法,包括振动传感器对橇体运行的过载和振动量的分离方法,遮光板光电组件的位置和速度微分方法,以及惯性平台系统的导航算法等,并通过数据比较,对惯性平台系统的性能和功能进行评价.由于遮光板外测系统的采样时间和观测量与捷联惯性测量装置不同,还探讨了试验后观测信息之间的转换、同一时刻不同信息数据的比较等数据处理方法,通过数据比较验证了惯性平台系统在火箭橇试验时的功能正常.该研究对惯性平台系统进一步开展精度验证和误差系数的分离奠定了基础.  相似文献   

7.
UKF在惯导平台误差系数辨识离心机测试中的应用   总被引:3,自引:1,他引:2  
针对惯导平台误差系数辨识的离心机测试,利用直接法建立了误差系数辨识的非线性模型,并结合实际系统模型的特点对标准UKF算法进行了简化和改进.改进后的UKF结构简单,与标准UKF具有同样的滤波精度,并且减小了计算量,提高了计算效率.然后利用扩展Kalman滤波(EKF)算法和改进的UKF算法对惯导平台误差系数辨识离心机测试进行仿真.结果表明,与EKF算法相比,改进的UKF算法能提高惯导平台误差系数的辨识精度,并且更容易实现.  相似文献   

8.
为提高惯性稳定平台控制系统的稳定精度,在常规PID控制的基础上提出了一种扩张状态观测器与PID相结合的复合控制算法。利用扩张状态观测器将惯性稳定平台的各种内部扰动和外部扰动都视为总和扰动并观测出来,然后通过PID控制器进行误差反馈控制,从而提高控制系统的扰动抑制能力与稳定精度。以Lu Gre摩擦模型加入控制模型进行仿真分析,并通过北航自研的惯性稳定平台进行实验验证。结果表明:扩张状态观测器/PD复合控制方法具有高的扰动抑制能力,可显著提高稳定平台稳定精度。相比常规PID方法,扩张状态观测器/PD复合控制使横滚框和俯仰框的稳定精度分别提高了33.23%和55.01%。  相似文献   

9.
针对惯性平台系统多位置自标定的误差系数个数还较少的现状,提出了一种平台十六位置自标定方案。通过对惯性平台系统惯性器件输出误差模型和惯性器件安装误差的详细分析,推导出了包含51项误差参数的平台系统误差模型。结合方程组有最小二乘解的理论,提出了适合平台多位置自标定系统的可观测性分析方法,并以此为指导,提出了平台多位置自标定系统的优化指标。根据此指标,结合平台信息矩阵的特点,得到了一种最优位置组合的数值搜索算法,并得到十六位置自标定方案。仿真结果显示,此十六位置自标定方案可以较高精度的估计出平台系统的全部51项误差参数。研究结果表明,用尽可能少的位置来高精度的辨识出尽可能多的平台误差参数是可实现的。  相似文献   

10.
针对高动态环境下惯性/天文组合导航精度下降的问题,提出一种基于神经网络辅助的惯性/天文组合导航方法。首先以组合导航滤波估计过程中的增益矩阵和动态环境下的惯性器件量测信息构建特征向量;然后,采用导航估计误差对BP神经网络进行训练;最后,利用BP神经网络的输出结果辅助修正组合导航系统。计算机仿真验证结果表明,相较于传统方法,基于BP神经网络辅助的惯性/天文组合导航系统的姿态估计精度可提高30%以上,在动态环境下姿态精度可以保持在5″(1σ)以内。所提出的方法对提高动态环境下惯性/天文组合导航系统的精度和适应能力具有一定的参考价值。  相似文献   

11.
基于内阻尼的捷联航姿算法   总被引:3,自引:1,他引:2  
捷联惯性航姿系统自身的特征就是误差存在舒勒周期振荡和傅科周期振荡,这就限制了捷联惯性航姿系统的精度。为了提高系统精度,将传统的平台内阻尼的思想引入到捷联惯性航姿系统中,通过设计水平回路中误差通道的三阶内阻尼网络,利用系统自身的速度信息来阻尼周期振荡,同时在内阻尼思想基础上提出了基于内阻尼的捷联航姿算法。由于改变了舒勒调谐的条件,内阻尼算法只有在加速度较小的条件下才能适用。通过数字仿真证明,在载体加速度较小的条件下,新的算法能够抑制舒勒周期振荡和傅科周期振荡,提高了捷联惯性航姿系统的精度。  相似文献   

12.
为了提高捷联惯性导航系统在线标定的精度和实时性,根据模型预测滤波算法和Sage_Husa自适应卡尔曼滤波算法的优点,提出了一种新的自适应模型预测组合滤波算法。该算法首先利用模型预测滤波算法估计出系统模型误差,并对系统状态方程实时修正,以减小系统模型误差对导航精度的影响;然后利用简化的自适应滤波算法对量测噪声在线调整,修正噪声统计特性,以提高滤波精度。将提出的算法进行在线标定仿真实验,并与传统的卡尔曼滤波在线标定算法进行比较,结果表明,提出的自适应模型预测组合滤波算法能有效完成在线标定,且标定精度和收敛速度均优于传统方法。  相似文献   

13.
惯性平台系统温度过高和剧烈变化是影响惯性导航系统导航精度的重要因素。为提升惯性平台系统的散热能力,提出了基于微型槽和充氦气的改进散热方法,并对散热效果进行分析。以某平台系统结构为对象,根据惯性平台系统传热机理,分析了当前惯性平台散热能力较差的原因。针对微型槽增大面积、填充氦气等散热方法开展数值仿真分析,并通过缩比样件的散热实验进行验证。实验结果表明,在强迫对流的基础上将两种方法结合使用,可使平台温度较改进前降低9.7℃,有效证明了两种散热方法的可行性及散热效果,为后续惯性平台系统的热设计提供指导。  相似文献   

14.
捷联惯导与小视场星体跟踪器构成惯性/天文组合导航系统,导航精度受导航初始误差和器件误差的综合影响。基于此,提出一种捷联惯导与小视场星体跟踪器相组合的初始对准算法,对导航初始姿态误差和惯性器件误差进行估计修正。捷联惯导初始对准过程完成之后,在地面准静基座条件下做速度和位置阻尼条件下的惯导更新解算,利用捷联惯导系统的速度误差量测及小视场星体跟踪器的导航误差角测量量,设计组合粗对准算法和组合精对准算法,用于对捷联惯导系统的初始对准误差和惯性器件误差做进一步有效估计。仿真结果表明:对中等精度导航级捷联惯导系统,组合对准后水平姿态精度可提高到2’’,方位精度可提高到5’’。  相似文献   

15.
激光捷联惯导系统上电启动时,陀螺受温度影响其零偏会经历快速变化到逐渐稳定的过程,影响惯导系统应用精度。因此,提出了一种基于粒子群-反向传播神经网络(PSO-BP)的激光陀螺温度补偿方法,利用粒子群算法寻找神经网络模型的最优权值与阈值,以温度和温度梯度作为自变量,建立陀螺零偏输出的补偿模型。激光惯导系统工作温度范围内的温度试验结果表明:与传统反向传播神经网络算法相比,所提出的PSO-BP神经网络模型的速度提高了4倍,模型拟合精度更高,且避免了反向传播算法易陷入局部最优解的问题。经过粒子群-反向传播算法补偿后,陀螺零偏稳定性相比温补前提高了60%,进一步验证了模型的有效性。  相似文献   

16.
数字式惯性平台稳定回路的离散变结构控制   总被引:2,自引:2,他引:0  
为了实际实现具有良好跟踪精度和抗干扰能力的惯性平台稳定回路,建立了平台伺服电机的离散时间模型,设计了由单片机和高速DSP组成的数字控制系统,与惯性平台组成了基于采样数据的平台稳定控制回路,研究了离散变结构控制趋近律的选取方法,采用改进趋近律设计了离散变结构控制律,提出了一种数字式平台稳定回路的离散变结构控制方法,通过实物实验得出了平台伺服电机转轴摩擦力矩模型系数的估计值,并将其引入到控制系统中.仿真实验结果表明,该回路系统对于摩擦力矩和系统参数不确定性具有一定的抗干扰性能,对于阶跃干扰力矩输入具有良好的动态特性,且静态力矩刚度提高到1.2×104 N.m/rad,系统对于斜坡和加速度输入信号实现了平稳跟踪,跟踪误差最大值分别为0.0056 rad和0.0597 rad.  相似文献   

17.
为了实现应用精密离心机对捷联惯导系统不拆分整体标定时各加速度计误差模型系数进行精确辨识,分析了可能影响加速度计标定精度的离心机误差源进而建立了相应的坐标系.在考虑各加速度计与反转平台轴线距离的情况下,应用齐次变换法计算了各加速度计各轴实际的比力输入,结合给定的加速度计误差模型,设计了一种可辨识误差模型中全部二阶误差模型系数的测试方法.仿真结果表明,该方法经修正离心机误差后可以有效地提高所有误差模型系数的标定精度,并能给出各加速度计与反转平台轴线的距离.仿真还分析了离心机误差对标定精度的影响,结果表明:离心机误差项主要影响1号加速度计 KF、KP、KPP 的标定精度,而对于 KII、KIO 的标定无影响;另外主要影响2号加速度计 KF,KI,KII 的标定精度,以及3号加速度计 KF、KO 的标定精度.  相似文献   

18.
微惯性测量单元由三轴正交的微机械陀螺、加速度计和微型地磁传感器组成。将上述装置与GPS接收机组合,可构成最佳导航定位模型,其中紧耦合MIMUs/GPS对全导航参数(位置、速度及姿态)的测量精度可大幅提高。由于微惯性传感器具有大漂移特性,为获得具有自适应的线性参数模型,提出了融合滤波的信息处理方法,利用强跟踪滤波实现状态预测,二阶EKF实现测量更新,并借用神经网络技术完成对状态预测的修正。由于系统组件具有非线性,该神经网络辅助的强跟踪滤波方法旨在逼近MIMUs/GPS的真实特性,并为车载用户提供更为精准的导航参数信息。动态环境下的仿真试验表明,尽管MEMS惯性传感器的精度有限,所提出的方法能够有效用于实际的导航参数解算。  相似文献   

19.
惯性定位系统中的累积误差问题使得惯性定位系统无法长时间使用。室内地理信息系统(GIS)中的建筑物结构、地标点位置等信息可以用来修正和优化惯性定位算法,解决其累积误差问题,从而实现惯性定位系统的精度保持,延长系统使用时长。使用射频识别(RFID)系统和建筑物结构信息构建了简易室内地理信息系统,提出了一种基于GIS的增强型行人航迹推算(PDR)算法,通过该算法融合GIS与惯性定位系统。实验表明,融合简易室内GIS的惯性行人定位系统较传统行人定位系统性能更优。在GIS提供航向标定和步长估算系数标定的情况下,融合GIS的惯性系统能够在60 min之后,较惯性定位系统误差分别降低50%和67%;在GIS提供位置和高度标定的情况下,融合GIS的惯性系统并未出现误差累积的现象,在使用超过150 min后,依然能够将行人航迹推算误差保持在2 m范围之内(>80%概率)。  相似文献   

20.
微惯性测量单元由三轴正交的微机械陀螺、加速度计和微型地磁传感器组成.将上述装置与GPS接收机组合,可构成最佳导航定位模型,其中紧耦合MIMUs/GPS对全导航参数(位置、速度及姿态)的测量精度可大幅提高.由于微惯性传感器具有大漂移特性,为获得具有自适应的线性参数模型,提出了融合滤波的信息处理方法,利用强跟踪滤波实现状态预测,二阶EKF实现测量更新,并借用神经网络技术完成对状态预测的修正.由于系统组件具有非线性,该神经网络辅助的强跟踪滤波方法旨在逼近MIMUs/GPS的真实特性,并为车载用户提供更为精准的导航参数信息.动态环境下的仿真试验表明,尽管MEMS惯性传感器的精度有限,所提出的方法能够有效用于实际的导航参数解算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号