首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effect of inter-Landau level mixing on confinement/deconfinement in antidot potentials of states with energies less than the potential height of the antidot array. We find that, depending on the ratio between the size of the antidot R and the magnetic length [Formula: see text], probability densities display confinement or deconfinement in antidot potentials (B is the magnetic field). When R/???1 form a nearly degenerate band and their probability densities are independent of k, in contrast to the case of R/??相似文献   

2.
Recent experiments have shown that two-dimensional electron systems with an externally applied magnetic field are an extremely rich ground for many-body physics. In particular, when only two of the Landau levels (LL) are filled an intricate magnetoresistance is found. This result stems from an interesting competition of electronic phases such as fractional quantum Hall liquids, reentrant integer Hall states, and unique quantized states at even denominator LL filling factors. We present a brief review of the transport properties of these electronic phases and discuss in detail the effects of an added in-plane magnetic field.  相似文献   

3.
Recent experiments have shown that two-dimensional electron systems with an externally applied magnetic field are an extremely rich ground for many-body physics. In particular, when only two of the Landau levels (LL) are filled an intricate magnetoresistance is found. This result stems from an interesting competition of electronic phases such as fractional quantum Hall liquids, reentrant integer Hall states, and unique quantized states at even denominator LL filling factors. We present a brief review of the transport properties of these electronic phases and discuss in detail the effects of an added in-plane magnetic field.  相似文献   

4.
Bilayer graphene bears an eightfold degeneracy due to spin, valley, and layer symmetry, allowing for a wealth of broken symmetry states induced by magnetic or electric fields, by strain, or even spontaneously by interaction. We study the electrical transport in clean current annealed suspended bilayer graphene. We find two kinds of devices. In bilayers of type B1 the eightfold zero-energy Landau level is partially lifted above a threshold field revealing an insulating ν=0 quantum-Hall state at the charge neutrality point. In bilayers of type B2 the Landau level lifting is full and a gap appears in the differential conductance even at zero magnetic field, suggesting an insulating spontaneously broken symmetry state. Unlike B1, the minimum conductance in B2 is not exponentially suppressed, but remains finite with a value G is < or approximately equall to e(2)/h even in a large magnetic field. We suggest that this phase of B2 is insulating in the bulk and bound by compressible edge states.  相似文献   

5.
We study here the onset of charge density wave instabilities in quantum Hall systems at finite temperature for Landau level filling nu>4. Specific emphasis is placed on the role of disorder as well as on an in-plane magnetic field. Beyond some critical value, disorder is observed to suppress the charge density wave melting temperature to zero. In addition, we find that a transition from perpendicular to parallel stripes (relative to the in-plane magnetic field) exists when the electron gas thickness exceeds approximately 60 A. The perpendicular alignment of the stripes is in agreement with the experimental finding that the easy conduction direction is perpendicular to the in-plane field.  相似文献   

6.
For topologically nontrivial and very narrow bands, Coulomb repulsion between electrons has been predicted to give rise to a spontaneous fractional quantum-Hall (FQH) state in the absence of magnetic fields. Here we show that strongly correlated electrons in a t(2g)-orbital system on a triangular lattice self-organize into a spin-chiral magnetic ordering pattern that induces precisely the required topologically nontrivial and flat bands. This behavior is very robust and does not rely on fine-tuning. In order to go beyond mean field and to study the impact of longer-range interactions, we map the low-energy electronic states onto an effective one-band model. Exact diagonalization is then used to establish signatures of a spontaneous FQH state.  相似文献   

7.
A modest in-plane magnetic field B(∥) is sufficient to destroy the fractional quantized Hall states at ν = 5/2 and 7/2 and replace them with anisotropic compressible phases. Remarkably, we find that at larger B(∥) these anisotropic phases can themselves be replaced by isotropic compressible phases reminiscent of the composite fermion fluid at ν = 1/2. We present strong evidence that this transition is a consequence of the mixing of Landau levels from different electric subbands. We also report surprising dependences of the energy gaps at ν = 5/2 and 7/3 on the width of the confinement potential.  相似文献   

8.
We consider a graphene bilayer in a constant magnetic field of arbitrary orientation, i.e., tilted with respect to the graphene plane. In the low energy approximation to the tight-binding model with Peierls substitution, we find the Landau level spectrum analytically in terms of spheroidal functions and the respective eigenvalues. We compare our result to the perpendicular and purely in-plane field cases. In the limit of perpendicular field we reproduce the known equidistant spectrum for Landau levels. In the opposite limit of large in-plane field this spectrum becomes two-fold degenerate, which is a consequence of Dirac point splitting induced by the in-plane field.  相似文献   

9.
We have developed a technique capable of measuring the tunneling current into both localized and conducting states in a 2D electron system (2DES). The method yields I-V characteristics for tunneling with no distortions arising from low 2D in-plane conductivity. We have used the technique to determine the pseudogap energy spectrum for electron tunneling into and out of a 2D system and, further, we have demonstrated that such tunneling measurements reveal spin relaxation times within the 2DEG. Pseudogap: In a 2DEG in perpendicular magnetic field, a pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field dependent. No existing theory predicts the observed behavior. Spin relaxation: We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2DES. For most 2D Landau level filling factors, we find that electrons tunnel with a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states (ν=1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to two orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.  相似文献   

10.
We report capacitors in which a finite electronic compressibility of graphene dominates the electrostatics, resulting in pronounced changes in capacitance as a function of magnetic field and carrier concentration. The capacitance measurements have allowed us to accurately map the density of states D, and compare it against theoretical predictions. Landau oscillations in D are robust and zero Landau level (LL) can easily be seen at room temperature in moderate fields. The broadening of LLs is strongly affected by charge inhomogeneity that leads to zero LL being broader than other levels.  相似文献   

11.
Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role.  相似文献   

12.
In order to achieve in configuration space a dimensional reduction from dimension two to one, the lowest Landau level (LLL) projection is not sufficient. One has also, once in the LLL, to take the vanishing magnetic field limit, a procedure which can be given a non ambiguous meaning by means of a long distance regulator. A thermodynamical argument is proposed which supports this claim. As an illustration, the equivalence of the LLL anyon model in the vanishing magnetic field limit to the Calogero model is established. Some general considerations in favor of an intimate connexion between anyon and Haldane statistics are also given.  相似文献   

13.
We investigate the photon polarization tensor at finite temperatures in the presence of a static and homogeneous external magnetic field. In our scheme, the summing of the Matsubara frequency is performed after Poisson resummation, which is easily completed and converges quickly. Moreover, the behaviors of finite Landau levels are presented explicitly. It shows a convergence while summing infinite Landau levels. Consequently, there is no necessity to truncate the Landau level in a numerical estimation. At zero temperature, the lowest Landau level (LLL) approximation is analytically satisfied for the vacuum photon polarization tensor. However, we examine that the LLL approximation is not enough for the thermal polarization tensor. The thermal tensor obtains non-trivial contributions from the finite-n Landau levels. And, photon spectra gains a large imaginary contribution in thermal medium, which is the so-called Landau damping. Finally, it is argued that the summation of Matsubara frequency is not commuted with Landau level ones, such conjecture is excluded in our calculations.  相似文献   

14.
We have investigated the interaction of phonons with a 2DEG in the FQH regime with phonon drag thermoelectric power (TEP). We find that the TEP at filling factors with the same even denominator is identical and at other even denominator filling factors they differ only by a constant. Assuming these states to be Composite Fermions (CF), we can explain our observations by extending a zero magnetic field theory for phonon drag to the CF-phonon interaction. This analysis is further corroborated by the observed T4 dependence of the CF TEP.  相似文献   

15.
黄伟  徐望  闫沐霖 《中国物理 C》2008,32(5):342-347
In the strong uniform magnetic field, the noncommutative plane (NCP) caused by the lowest Landau level (LLL) effect, and QED with NCP (QED-NCP) are studied. Being similar to the condensed matter theory of quantum Hall effect, an effective filling factor f(B) is introduced to characterize the possibility that the electrons stay on the LLL. The analytic and numerical results of the differential cross section for the process of backward Compton scattering in accelerator with unpolarized or polarized initial photons are calculated. The existing data of BL38B2 in Spring-8 have been analyzed roughly and compared with the numerical predictions primitively. We propose a precise measurement of the differential cross sections of backward Compton scattering in a strong  相似文献   

16.
In the strong uniform magnetic field,the noncommutative plane(NCP) caused by the lowest Landau level (LLL) effect,and QED with NCP (QED-NCP) are studied.Being similar to the condensed matter theory of quantum Hall effect,an effective filling factor f(B) is introduced to characterize the possibility that the electrons stay on the LLL.The analytic and numerical results of the differential cross section for the process of backward Compton scattering in accelerator with unpolarized or polarized initial photons are calculated.The existing data of BL38B2 in Spring-8 have been analyzed roughly and compared with the numerical predictions primitively.We propose a precise measurement of the differential cross sections of backward Compton scattering in a strong perpendicular magnetic field.which may reveal the effects of NCP.  相似文献   

17.
We observe density-induced 90 degrees rotations of the anisotropy axes in transport measurements at half-filled high Landau levels in the two dimensional electron system, where stripe states are proposed ( nu = 9/2, 11/2, etc.). Using a field effect transistor, we find the transition density to be 2.9x10(11) cm(-2) at nu = 9/2. Hysteresis is observed in the vicinity of the transition. We construct a phase boundary in the filling factor magnetic field plane in the regime 4.4相似文献   

18.
Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures.  相似文献   

19.
The fractional quantum Hall effect is observed at low magnetic field where the cyclotron energy is smaller than the Coulomb interaction energy. The nu=5/2 excitation gap at 2.63 T is measured to be 262+/-15 mK, similar to values obtained in samples with twice the electronic density. Examining the role of disorder on the 5/2 state, we find that a large discrepancy remains between theory and experiment for the intrinsic gap extrapolated from the infinite mobility limit. The observation of a 5/2 state in the low-field regime suggests that inclusion of nonperturbative Landau level mixing may be necessary to fully understand the energetics of half-filled fractional quantum Hall liquids.  相似文献   

20.
We investigate the n = 0 Landau level (LL) in monolayer graphene with high magnetic field. We find that the energy gap is opened in the n = 0 LL by the magnetic-field-dependent lattice relaxation originating from the interactions between the electrons (holes) and longitudinal-deformation-acoustic phonon. Both the linear and square-foot dependence of the energy gap on the magnetic field are obtained depending on the choice of the Debye cut-off wave number for the acoustic phonon. The relations of the Huang-Rhys parameter (lattice relaxation strength) and the transition linewidths with the magnetic field are also discussed. Our results agree with the current experiments on graphene in high magnetic field, and provide an alternative explanation for the experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号