首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
带有攻击角约束的多导弹协同制导律   总被引:1,自引:0,他引:1  
针对带有攻击角约束的多导弹同时攻击机动目标问题,提出了一种带有攻击角约束的协同制导律。首先基于平面内的导弹-目标相对运动方程,建立了带有攻击角约束的协同制导模型;其次,把协同制导律的设计过程分离为两个部分:一是基于图论的有关内容,运用有限时间一致性理论设计沿着视线方向上的加速度指令来保证所有导弹与目标的相对距离在有限时间内到达一致,进而保证所有的导弹同时击中机动目标;二是利用非齐次干扰观测器对机动目标的加速度进行估计,并运用滑模控制设计视线法向上的加速度指令来保证每枚导弹与目标间的视线角速率收敛到零和视线角收敛到期望的终端视线角,即每枚导弹以期望的终端视线角成功击中目标;最后,对三枚导弹同时打击同一机动目标的情况进行仿真,仿真结果表明本文设计的带有攻击角约束的协同制导律的有效性和正确性。  相似文献   

2.
针对多导弹攻击时间协同的高价值或大型目标攻击问题,基于滑模控制方法,提出了一种非奇异的滑模制导律,并设计了一种适用于机动目标的导弹剩余飞行时间估计方法。通过对滑模制导律切换控制部分的合理设计,保证了系统的Lyapunov稳定性,且避免了滑模面的收敛和保持受到弹道收敛的影响总是可达的。适用于机动目标的剩余飞行时间估计方法采用虚拟目标的设计思路,将目标加速度和速度对弹目相对运动关系的影响投影到弹目视线方向上,从而实现目标的虚拟静止。针对目标固定、非机动和机动三种情况,进行了多枚导弹飞行时间协同攻击的数字仿真。仿真结果表明所估计的剩余飞行时间可以快速收敛到真值,且误差趋近于零。所设计的多导弹攻击时间协同滑模制导律在完成目标攻击的同时,实现了导弹间在攻击时间上的协同。  相似文献   

3.
为使多空空导弹以不同的落角同时命中机动目标的不同关键部位,提出一带有落角约束和视场角约束的三维协同制导律。首先在导弹的偏航和俯仰平面分别运用二次型最优控制的黎卡提方程推导了带有落角约束的加速度指令,以确保导弹按期望的落向和落角打击目标。其次采用可控开关反向原加速度指令的方法,对视场角进行修正,确保目标始终在导弹视场内。然后基于有限时间一致性理论,在落角约束与视场角约束的基础上设计了具有时变导引系数的协同制导律,使各导弹同时击中机动目标。最后通过仿真验证了所设计的多约束条件协同制导律的有效性与正确性,相比于比例导引可以实现对目标不同方位的协同打击,脱靶量小于0.41 m,落角落向误差均小于0.23°,时间误差在0.1 s以内,并有效避免了机动指令的抖振现象。  相似文献   

4.
为提高命中高价值目标的概率,基于线性二次型微分对策理论,对两枚导弹协同拦截单个目标的制导律进行了研究。单枚导弹在最小化自身脱靶量的同时,与另一枚导弹实现拦截角度上的协同,从而构成特定的拦截态势,以提高拦截机动目标的性能和末制导尾端对目标的可观测性。所推导的微分对策制导律考虑到了对策三方的控制系统动态,且具有解析解,形式上为零控脱靶量和零控协同拦截角误差的线性组合。基于推导结果完成了微分对策制导律的制导增益和对策空间分析,给出了鞍点解的存在条件,并进行了分析。非线性系统仿真结果表明由于导弹间存在显式的协同关系,拦截目标所需的加速度较低,且在设定的协同拦截角度收敛后,加速度会进一步减小。  相似文献   

5.
针对带有末端多约束的三维非线性制导问题,设计了一种通用模型预测静态规划制导算法。该制导算法通过向后迭代求解权矩阵微分方程对控制量进行更新,将动态优化问题转化为静态优化问题,计算效率得以提高。阐述了通用模型预测静态规划制导算法的基本原理,详细给出了基于通用模型预测静态规划算法的制导律设计过程。所设计的制导律满足末端法向加速度约束,因此,间接满足末端弹体姿态角约束。仿真时考虑目标的机动方式和落角约束,仿真结果表明,末端位移偏差小于0.5 m,末端落角可控制在0.01°范围内,末端法向加速度小于0.01 m/s2,该制导律能够很好地满足末端位移、落角和法向加速度约束。  相似文献   

6.
为提高攻击导弹同时面对目标飞机及其防御导弹情况下的命中概率,基于微分对策理论,对攻击导弹的制导律进行了设计。应对独立控制的多对象博弈问题,微分对策理论具有天然的优势,且相比于最优制导律,微分对策制导律对于目标机动估计误差和机动策略具有更强的鲁棒性。所推导的微分对策制导律进一步考虑了攻击导弹的控制有界性,且适用于攻击导弹、目标飞机和防御导弹具有高阶线性控制系统动态的情形。为验证制导律性能,进行了非线性系统仿真,结果表明该制导律在成功归避防御导弹的同时可实现趋于零脱靶量的目标拦截。攻击导弹为实现规避和攻击的双重任务,仅需要保持相比于防御导弹两倍左右的机动优势。  相似文献   

7.
针对弹道导弹临近空间低弹道突防问题,对仅仅满足末端输出量约束的模型预测静态规划(MPSP)制导方法进行扩展,提出了带弹道路径点约束的扩展MPSP制导方法。通过在临近空间中段飞行弹道上设置一系列弹道路径点约束,依靠这种策略调节中段飞行弹道的形状,提高弹道导弹的机动突防能力。通过仿真对扩展MPSP制导方法的有效性进行验证,仿真结果表明扩展MPSP制导方法能很好地满足临近空间中段低弹道飞行弹道路径点约束,弹道路径点处的角度偏差可控制在0.1°范围内,位移偏差可控制在1.0 m范围内。  相似文献   

8.
针对小角度假设或其他线性化条件不满足时的协同拦截问题,提出了一种适用于非线性模型的协同微分对策制导律。考虑两枚拦截弹协同拦截单个机动目标,以微分对策理论为基础,以实现碰撞拦截为目的,将两枚拦截弹的视线角速度作为状态变量,结合状态相关黎卡提方程方法,把复杂的求解偏微分方程问题转化为容易求解的次优化问题,最后得出了可在线应用的解析形式闭环解。这种闭环解在形式上具有耦合性,体现了一种显式的协同关系,且不依赖于剩余时间,从而避免了对剩余时间估计精度问题的考虑。通过非线性仿真验证了所设计制导律的性能,拦截弹采用所提协同制导方法时侧向加速度要求得到了降低,与线性方法相比所消耗的控制能量减少了约25%。  相似文献   

9.
在有向通信拓扑下研究了导弹编队的鲁棒自适应协同跟踪控制问题。针对导弹编队系统中队形跟踪、外部扰动和模型不确定性的情况,通过选取包含位置跟踪误差和速度跟踪误差的辅助变量,提出了一种基于有向通信拓扑的鲁棒自适应编队控制策略。提出了自适应律对未知参数进行估计,并且利用Lyapunov稳定性理论分析了闭环系统的渐近稳定性。进一步,对于通信时滞的情况,给出了系统渐近稳定所需要满足的条件。与滑模控制等传统鲁棒控制不同,所设计的鲁棒自适应控制器是连续的,更便于导弹编队系统的实现。数值仿真结果表明,队形跟踪误差小于0.03 m,队形保持误差小于0.07 m,所设计的控制器能实现高精度的编队跟踪控制。  相似文献   

10.
针对多约束制导问题,给出了一种同时满足末端角度约束和飞行轨迹路径点约束的模型预测扩展控制制导方法,该制导方法通过满足飞行轨迹路径点约束实现灵活调节飞行轨迹,可以大大缩短目标防御反应时间。模型预测扩展控制制导方法是基于非线性最优控制理论,给出了控制量表达式以二次形式近似时制导律的设计过程。模型预测扩展控制制导方法只能对末端时刻输出量进行约束,通过对该制导方法进行扩展,使其还可以满足飞行轨迹路径点约束。仿真结果表明,考虑飞行轨迹路径点约束时,导弹经过设定的路径点并以给定的弹道倾角命中目标。  相似文献   

11.
具有攻击角约束的非奇异终端滑模导引律设计   总被引:2,自引:0,他引:2  
为了满足导弹拦截高速大机动目标时高精度制导的需求,首先对二维平面内的弹目相对运动方程进行状态扩张,对于影响制导性能的目标总扰动采用了扩张状态观测器的方法进行动态补偿。然后在非奇异终端滑模面的基础上选取了两种滑模趋近律,设计了两种具有攻击角约束的非奇异终端滑模导引律。最后数值仿真结果表明,在观测器对扩张系统状态进行实时有效估计的前提下,针对不同的期望视线角和目标机动方式,所设计的两种导引律在满足期望的性能要求的同时,可实现导弹对目标的高精度快速打击。  相似文献   

12.
针对目前多弹协同研究中长距离、宽速域、大空域协同弹道规划研究匮乏这一问题,同时考虑通过弹道设计降低飞行过程中雷达探测概率的实际需求,提出了一种面向突防的多导弹攻击时间/攻击角度协同的弹道规划方法。根据雷达方程,建立了威胁量化模型;针对多导弹攻击时间/攻击角度协同作战需求,给出了实现攻击时间/攻击角度协同的方法;设计了协同弹道规划求解框架,将上述协同攻击问题转化为非线性规划问题,基于hp-自适应Radau伪谱法进行求解得到了满足攻击时间/攻击角度协同的弹道,并对两种典型案例进行了仿真验证。同地先后发射和不同地同时发射情况下,均得到了满足攻击时间/攻击角度协同的弹道。仿真结果表明,该方法能够满足雷达探测威胁最小条件下,多导弹以协同攻击时间/攻击角度对目标实施打击。  相似文献   

13.
针对传统最优末制导律鲁棒性能较弱,且对参数摄动及外扰敏感的不足,而滑模控制对扰动具有较强鲁棒性的优点,提出一种新的基于反演准连续高阶滑模的最优末制导律,其中反演控制能够有效保证系统全局稳定性,而准连续高阶滑模控制则用于消除扰动影响。为了去除抖振效果,引入自适应超螺旋算法在线更新控制参数以消除符号函数导致的高频抖振影响。仿真结果表明:飞行器在该末制导律导引下,弹目视线角速率快速收敛,从而保证飞行器有很高的命中精度;鲁棒性较强;能够较好的满足约束条件要求。  相似文献   

14.
带约束非线性多体系统动力学方程数值分析方法   总被引:1,自引:0,他引:1  
Lagrange方法是建立带约束多体系统动力学方程的普遍方法之一 ,其方程的形式为微分 代数方程组 ,数值计算与数值分析是研究多体系统动力学特性的重要方法。本文利用缩并法给出了带约束多体系统动力学方程的隐式数值计算方法和Lyapunov指数的计算方法。将数值仿真、Lya punov指数计算和Poincare映射有机结合 ,分析非线性多体系统动力学行为。通过一个算例 ,说明该方法的有效性  相似文献   

15.
带约束多体系统动力学方程的隐式算法   总被引:3,自引:0,他引:3  
研究了带约束多体系统隐式算法,用子矩阵的形式推导出了多体系统正则方程的Jacobi矩阵,它适用于多种隐式算法并给出了隐式Runge-Kutta算法,最后用一算例表明了隐式算法的计算效率和精度明显优于算法。  相似文献   

16.
拦截高超声速飞行器的三维有限时间制导律设计   总被引:1,自引:0,他引:1  
由于高超声速飞行器具有飞行速度快、机动能力强等特点,因此,传统的制导方式难以保证拦截弹拦截高超声速飞行器时的制导精度。为了减小弹目相对速度,降低对拦截弹的过载能力要求,按照前向制导方式,设计了有限时间收敛的三维前向滑模制导律。该制导律采用了连续的快速双幂次趋近律,不仅保证收敛速度快,同时削弱了传统制导律中存在的抖振现象。在此基础上为了处理系统扰动的上界未知的问题,又设计了自适应滑模制导律,该制导律既可以处理未知上界的外部扰动又可以保证第一种制导律所具有的良好特性。运用李雅普诺夫稳定性理论对所设计的滑模制导律进行了理论证明,最后,通过数值仿真验证了所设计制导律的有效性及优越性。  相似文献   

17.
在多体系统动力学正则方程的基础上建立了平面多体系统正则方程的隐式数值算法。利用平面运动的特性,对正则方程进行了简化,导出了该方程的Jacobi矩阵的一般表达式,给出了Runge-Kuta多体系统动力学方程隐式数值计算方法。算例表明,该方法是一种计算速度和精度均理想的数值方法。  相似文献   

18.
研究双面理想完整约束系统在约束不是定常且主动力不是有势时的机械能守恒律. 建立系统的能量变化方程,给出存在机械能守恒律的充分必要条件. 分析有机械能守恒律的12种情况. 最后给出说明性算例.  相似文献   

19.
基于数据链的智能导弹协同定位方法   总被引:4,自引:0,他引:4  
提出了一种基于数据链无线电测距功能实现智能导弹协同定位的方法.考虑智能导弹编队由领弹和攻击弹组成,给出了智能导弹编队协同作战模式和基于数据链的无线电测距方法;在此基础上,研究了领弹和攻击弹协同定位的方法,并推导了相应的协同定位模型.攻击弹通过数据链获得领弹的位置信息及其与领弹之间的伪距值,采用卡尔曼滤波方法融合伪距值与惯性导航系统输出,可以获得攻击弹的精确定位信息,从而实现了领弹与攻击弹之间的协同定位.针对所提出的智能导弹协同定位方法,进行了仿真研究.仿真结果验证了协同定位方法的有效性.  相似文献   

20.
考虑输入受限和自动驾驶仪延迟的自适应滑模制导律   总被引:1,自引:0,他引:1  
在输入受限的情况下,为了满足导弹拦截机动目标时高精度制导的需求,首先建立了满足输入受限和考虑导弹自动驾驶仪一阶动态特性的制导模型,其把目标加速度视为未知有界的外界干扰,通过设计自适应控制估计干扰的上界来避免对干扰上界的先验要求,同时结合滑模控制,设计了一种考虑输入受限和自动驾驶仪延迟的自适应滑模制导律,并且基于Lyapunov稳定性理论证明了制导系统状态渐进收敛到零。最后,在所设计的制导律下,对目标余弦机动和阶跃机动两种情况进行了仿真,得到的脱靶量分别为0.040 m和0.036 m,拦截时间分别为6.460 s和7.833 s。仿真结果表明所设计的制导律不仅保证导弹有效击中目标,并且具有较高的制导精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号