首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pr1−xPbxMnO3 (x=0.1–0.5) perovskites have been fabricated by solid-state reaction. The X-ray diffraction patterns show that the samples are of single phase with orthorhombic structure. The field-cooled (FC) and zero-field-cooled (ZFC) thermomagnetic curves measured at low field and low temperatures exhibit the spin glass-like state. The Curie temperature of samples increased with increase in Pb content. The maximum magnetic entropy change |ΔSm|max reaches the giant values of 3.91 and 3.68 J/kg K for quite low magnetic field change of 1.35 T for the samples x=0.1 and 0.4, respectively. The resistance measurements show that there is insulator–metal phase transition on the R(T) curves for samples with x?0.3. The giant magnetoresistance effect is also observed for all samples studied.  相似文献   

2.
The results of theoretical and experimental investigations of the phase transitions in ferromagnetic Heusler alloys with a thermoelastic martensitic transition are briefly discussed.  相似文献   

3.
We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔS R M= 16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 k Oe. The large anisotropic magnetic entropy change is mainly accounted for the 4 f electron of rare-earth Dy3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite Dy FeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region.  相似文献   

4.
《Current Applied Physics》2020,20(6):794-801
Orthorhombic La0.7-xEuxCa0.3MnO3 samples (x = 0.04–0.12) with apparent density of ρ = 3.9–4.1 g/cm3 prepared by solid-state reactions have been studied. The analysis of temperature-dependent magnetization for an applied field H = 500 Oe indicated a decrease of the Curie temperature (TC) from about 225 K for x = 0.04 through 189 K for x = 0.08–146 K for x = 0.12. The magnetocaloric (MC) study upon analyzing M(H, T) data has revealed that the magnetic entropy change around TC reaches the maximum (|ΔSmax|), which is dependent on both x and H. For an applied field interval of ΔH = 60 kOe, |ΔSmax| values are about 5.88, 4.93, and 4.71 J/kg⋅K for x = 0.04, 0.08, and 0.12, respectively. Though |ΔSmax| decreases with increasing x, relative cooling power (RCP) increases remarkably from 383 J/kg for x = 0.04 to about 428 J/kg for x = 0.08 and 0.12. This is related to the widening of the ferromagnetic-paramagnetic transition region when x increases. Particularly, if combining two compounds with x = 0.04 and 0.08 (or 0.12) as refrigerant blocks for MC applications, a cooling device can work in a large temperature range of 145–270 K, corresponding to RCP ≈ 640 J/kg for H = 60 kOe. M(H) analyses around TC have proved x = 0.04 exhibiting the mixture of first- and second-order phase transitions while x = 0.08 and 0.12 exhibit a second-order nature. The obtained results show potential applications of Eu-doped La0.7Ca0.3MnO3 materials for magnetic refrigeration below room temperature.  相似文献   

5.
The effects of Sn addition on phase transformation behavior and magnetocaloric properties of Mn50Ni25Ga25−xSnx (x=0, 0.1, 0.5, 1 and 2 at%) alloys were investigated in this work. The results show that the addition of Sn reduces the structural transformation temperatures. It is found that the second phase exists in the austenite matrix of the as-casted alloys at room temperature. After being annealed at 1073 K for 48 h, the precipitates totally soluted into the matrix. Magnetization measurements indicate that the saturation magnetizations of the alloys increase significantly with increase in Sn contents. In addition, the ΔMS obviously increases with increase in the Sn contents, implying the higher efficiency shift of the martensitic transformation temperature under the magnetic field.  相似文献   

6.
雷天民  吴胜宝  张玉明  郭辉  陈德林  张志勇 《物理学报》2014,63(6):67301-067301
为了研究稀土掺杂对单层MoS2电子结构的影响,文章基于密度泛函理论框架下的第一性原理,采用平面波赝势方法分别计算了本征及La,Ce,Nd掺杂单层MoS2的晶格参数、能带结构、态密度和差分电荷密度.计算发现,稀土掺杂所引起的晶格畸变与杂质原子的共价半径大小有关,La杂质附近的键长变化最大,Nd杂质附近的键长变化最小.能带结构分析表明,La掺杂可以在MoS2的禁带中引入3个能级,Ce掺杂可以形成6个新能级,Nd掺杂可以形成4个能级,并对杂质能级属性进行了初步分析.差分电荷密度分布显示,稀土掺杂可以使单层MoS2中的电子分布发生改变,尤其是f电子的存在会使差分电荷密度呈现出反差极大的物理图象.  相似文献   

7.
The influences of boron addition on the phase formation, Curie temperature and magnetic entropy change of the NaZn13-type La(Fe0.9Si0.1)13 compound have been investigated. Eight boron containing La(Fe0.9Si0.1)13Bx samples were prepared with x=0, 0.03, 0.06, 0.1, 0.2, 0.3, 0.5 and 0.6, respectively. Experimental results show that a small amount of B addition in La(Fe0.9Si0.1)13 forms the solid solution NaZn13-type structure phase by substituting B for Si or doping B into interstitial position of the lattice, preserves its giant magnetocaloric effects due to their first-order structural/magnetic transition, as well as increase its Curie temperature Tc slightly. The maximum magnetic entropy changes in the magnetic field change of 0–1.6 T are around 20 J kg–1 K–1 for the samples with Boron addition less than 0.3, while improving the Curie temperatures by 2 K.  相似文献   

8.
Effects of temperature and pressure on magnetic, elastic, structural, and thermal properties of Tb5Si2Ge2 have been studied by means of macroscopic (thermal expansion and magnetization) and microscopic (neutron powder diffraction) techniques. We present evidence that the high-temperature second-order ferromagnetic transition can be coupled with the low-temperature first-order structural phase change into a single first-order magnetic-crystallographic transformation at and above a tricritical point in the vicinity of 8.6 kbar. This pressure-induced coupling has a remarkable effect on the magnetocaloric effect, transforming Tb5Si2Ge2 from an ordinary into a giant magnetocaloric effect material.  相似文献   

9.
10.
Mn位W掺杂对La0.3Ca0.7MnO3体系磁结构的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
通过对La0.3Ca0.7Mn1-xWxO3(x=0.00,0.04,0.08,0.12,0.15)多晶样品M-T曲线、M-H曲线及ESR谱的测量,研究了Mn位W掺杂对电荷有序体系La0.3Ca0.7MnO3磁结构的影响.结果表明,当掺杂量为0.00≤x≤0.08时,体系存在电荷有序(CO)相,AFM/CO态共存于相变温度以下,电荷有序温度TCO随着W掺杂量的增加而增加;x=0.04时,样品在低温下为FM相与AFM/CO相共存,在CO相建立前、后均有FM从PM中分离出来;当x≥0.12时,CO态融化,在极低温度下存在顺磁-铁磁(PM-FM)相变.  相似文献   

11.
A massive magnetic-field-induced structural transformation in Gd5Ge4, which occurs below 30 K, was imaged at the atomic level by uniquely coupling high-resolution x-ray powder diffraction with magnetic fields up to 35 kOe. In addition to uncovering the nature of the magnetic field induced structural transition, our data demonstrate that the giant magnetocaloric effect, observed in low magnetic fields, arises from the amplification of a conventional magnetic entropy-driven mechanism by the difference in the entropies of two phases, borne by the concomitant structural transformation.  相似文献   

12.
13.
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe1-xSnx, in the range x0.1. Our phase diagram is a result of magnetic and calorimetric measurements. We find that the separate magnetic and structural transitions in CoMnGe are tuned together as the level of Sn substitution is increased. We demonstrate the appearance of a hysteretic magnetostructural phase transition in the range x=0.04–0.055, similar to that observed in CoMnGe under hydrostatic pressure. From magnetisation measurements, we show that the isothermal entropy change associated with the magnetostructural transition can be as high as in a field of 1 T. However, the large thermal hysteresis in this transition () will limit its straightforward use in a magnetocaloric device.  相似文献   

14.
The magnetic properties and magnetocaloric effect(MCE) in EuTi_(1-x)Co_xO_3(x = 0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti~(4+) ions were substituted by Co2+ions, the delicate balance was changed between antiferromagnetic(AFM) and ferromagnetic(FM) phases in the EuTiO_3 compound. In EuTi_(1-x)Co_xO_3 system, a giant reversible MCE and large refrigerant capacity(RC) were observed without hysteresis. The values of -?S_M~(max) were evaluated to be around 10 J·kg~(-1)·K~(-1) for EuTi_(0.95)Co_(0.05)O_3 under a magnetic field change of 10 kOe. The giant reversible MCE and large RC suggests that EuTi_(1-x)Co_xO_3 series could be considered as good candidate materials for low-temperature and low-field magnetic refrigerant.  相似文献   

15.
Low-lying states in 57 128 La and 56 128 Ba have been investigated by γ-ray spectroscopy after the β decays of 58 128 Ce and 57 128 La. For the EC+β+ decay of 128Ce, a new halflife has been determined to be 4.1 ± 0.3 min. In 128La a new β-unstable isomeric state with a halflife shorter than 2 min is suggested in addition to a previously known isomeric state with the halflife of 5.2 min. A tentative level scheme of 128La at low excitation energies has been constructed from the γ?γ coincidence measurement after the β decay of 128Ce. The γ?γ angular correlation for γ rays from 128Ba after the β decay of 128La suggests that the spin-parity assignment of I π = 4? or 5+ is preferable for the 2424.9 keV level which is populated via the β decay of the 5.2-min isomeric state with a log ft value of 5.6. For the 2877.1 keV level observed with log ft = 5.8, a preferable spin-parity assignment is 5? or 6+. On the basis of these decay properties and low-lying excited states in neighboring odd mass nuclei, the spins and parities of isomeric states in 128La are proposed to be (1+ or 2+) for the low-spin state, while (5± or 6+) for the high-spin state, within the limit of zero order approximation to the proton-neutron couplings.  相似文献   

16.
Measurements of the magnetic susceptibility between 0.03 and 300 K and of the magnetization between 0.05 and 10K for magnetic fields up to 60kOe have been used to investigate effects from the interaction between the conduction electrons and local magnetic moments in (La1–x Ce x )B6 alloys (0.0007x0.10). For Ce concentrationsx<0.006 the data show Kondo-type single impurity behavior at low temperatures with a transition from a magnetic to a non-magnetic regime of the Ce ions. In the magnetic regime the impurity susceptibility follows a Curie-Weiss law, and in the non-magnetic regime it varies withT 2. An external magnetic field gradually restores the free-ion behavior of the Ce impurities. For more concentrated alloys interactions between the impurities are observed. The RKKY interaction strength derived is more than two orders of magnitude smaller than in the Kondo systemCuFe. Values of thes–f exchange integral,J, estimated from both the Kondo effect and the RKKY interactions are in good agreement. The relatively high Kondo temperature, in spite of a smallJ, can be explained by a density-of-states argument. The influence of crystal field excitation on the susceptibility is also discussed.  相似文献   

17.
The doping effects of La3+ ions on the photoluminescence properties and color tunability of (Mg, Mn)(Y, Ce, La)4Si3O13 phosphors have been elaborated in this study. On increasing the La3+ concentration in the host, tunability of excitation wavelength is achieved first, which in turn leads to the blue shift in the wavelength of Ce3+ emission. The high-energy emission shift of Ce3+ ions results from the change in the crystal field around Ce3+ ions. With the incorporation of La3+ ions, the chromaticity coordinates shift towards white-light region showing the tunable characteristics. Moreover, the correlated color temperature (CCT) change from warm white to cool white light region with different concentration of La3+ ions. The variation of different excitation wavelength tunes the emission thus augmenting the probability of (Mg, Mn)(Y, Ce, La)4Si3O13 phosphors for potential application in optical devices.  相似文献   

18.
X-ray photoemission, X-ray photoabsorption and bremmstrahlung isochromat spectroscopy in Ce and La compounds are theoretically analyzed by using the single-site Anderson model incorporated with various final state interactions. Discussions are given on the physical information derived from the analysis and also on similarities and differences in spectral features between metallic and insulating systems.  相似文献   

19.
20.
Structural, magnetic and magnetocaloric properties of La1−xErxFe11.44Si1.56 (x=0, 0.1 and 0.3) compounds were investigated by X-ray diffraction and magnetic measurements. These compounds have a cubic NaZn13 structure with ferromagnetic structure. X-ray powder diffraction showed that the lattice parameter decreases with increasing Er concentration indicating the introduction of Er atoms in the La–Fe phase. The Curie temperature increases slightly with increasing Er up to x=0.3. Magnetic entropy change ΔSm allowing estimation of the magnetocaloric effect (MCE) was determined based on thermodynamic Maxwell's relation. A large magnetic entropy change was observed for low Er contents, the origin of the large MCE is attributed to the first-order field-induced itinerant-electron metamagnetic transition (IEM). However, a decrease of ΔSm with increasing Er concentration is observed. This reduction in magnetocaloric properties is explained by the fact that the increase of Er content in La1−xErxFe11.44Si1.56 formula drives the Ferro–Para transition towards second order and eliminates the metamagnetic transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号