首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relativistic heavy-ion collisions can produce extremely strong magnetic fields in the collision regions.The spatial variation features of the magnetic fields are analyzed in detail for non-central Pb–Pb collisions at LHC at√s NN = 900, 2760 and 7000 Ge V and Au–Au collisions at RHIC at√s NN=62.4, 130 and 200 Ge V. The dependencies of magnetic field on proper time, collision energies and impact parameters are investigated in this paper. It is shown that an enormous and highly inhomogeneous spatial distribution magnetic field can indeed be created in off-centre relativistic heavy-ion collisions in RHIC and LHC energy regions. The enormous magnetic field is produced just after the collision, and the magnitude of magnetic field of the LHC energy region is larger than that of the RHIC energy region at small proper time. It is found that the magnetic field in the LHC energy region decreases more quickly with the increase of proper time than that of the RHIC energy region.  相似文献   

2.
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.  相似文献   

3.
The magnetocrystalline anisotropy and magnetoelasticity of preferentially oriented martensitic variants in an off-stoichiometric Ni52Mn24Ga24 single crystal have been investigated.We found that the easy magnetization direction of the martensite phase in the [110] direction,and the hard magnetization exhibited in [001],the growth direction of single crystals.The temperature dependence of the anisotropy fields and constants of Ni52Mn24Ga24 have been determined.It was found that,at the martensite phase,the anisotropy field increases monotonically with decreasing temperature,but the anisotropy constant first increases rapidly and then the increasing rate becomes smaller and smaller.Based on a previous model,the present results suggest that the competition between the Zeeman energy and the magnetocrystalline anisotropy energy is mainly responsible for the magnitude of magnetic-field-induced strain in this material.  相似文献   

4.
Based on a classical Heisenberg lattice model with dipole interaction and the method of spin dynamic simulation,the magnetic configurations (MC),hysteresis loop (HL) and magnetic resistance (MR) of the nanomagnets with different geometries,such as circle,square and rectangle,are studied for different directions of applied field.In the case of perpendicular field to the plane,the magnetization and MR are reversible and have not hysteresis.When the field is applied in the plane,the HL is irreversible and is qualitatively well agreeable with the current experimental results.The MR loop is also irreversible and appears two peaks distributed at two sides around zero field.The peaks of magnetic resistance are relative to the vortex state of similar configuration.Large easy-axis anisotropy will suppress the MC anisotropy,and the large magnetoresistance effect disappears.  相似文献   

5.
Above Curie temperature, MnBi crystals are aligned in situ along the c-axis in a Bi matrix by a high fabrication magnetic field H f of 10 T. Magnetic testing shows a pronounced anisotropy in magnetization in directions normal and parallel to the fabrication field, resulting from the alignment. The successful alignment m v result from the fact that the easy magnetization direction is along the c-axis of MnBi and the high fabrication field of 10 T is large enough to rotate the )MnBi crystal to this direction even though the temperature is above the Curie temperature.  相似文献   

6.
L10FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order–disorder transition temperature of the nanocomposite is higher than 600℃, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters,formation energy, electronic structure, atomic magnetic moment and order–disorder transition temperature of L10FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10FePt. The special quasirandom structures(SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order–disorder transition temperatures are 1377℃ and 600℃, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively,indicating that the magnetic property of the doped system is almost unchanged.  相似文献   

7.
The △E effect and the magnetoelastic or magnetomechanical damping of vibrations in [110] oriented Tbo.aDyo.TFe1.95 alloy are experimentally studied by quasi-static stress-strain measurements under various constant magnetic fields between 0 and 3000 Oe, where stress ranges are taken from about 0 to -25, -50, -75 MPa. The linear stressstrain behaviour is obtained when the magnetic field is high enough (9000 Oe). However, the modulus E varies with the angle θ between the compressive stress and magnetic field (9000 Oe), which shows that the anisotropy of the modulus E is related to the magnetic domain distribution.  相似文献   

8.
We have calculated variationally the ground state binding energy of a hydrogenic donor impurity in a parabolic quantum well in the presence of crossed electric and magnetic fields. These homogeneous crossed fields are such that the magnetic field is parallel to the heterostructure layers and the electric field is applied perpendicular to the magnetic field. The dependence of the donor impurity binding energy to the well width and the strength of the electric and magnetic fields are discussed. We hope that the obtained results will provide important improvements in device applications, especially for a suitable choice of both fields in the narrow well widths.  相似文献   

9.
李志伟  杨旭  王海波  刘忻  李发伸 《中国物理 B》2009,18(11):4829-4833
Thin ferromagnetic films with in-plane magnetic anisotropy are promising materials for obtaining high microwave permeability.The paper reports a Mo¨ssbauer study of the field induced in-plane uniaxial anisotropy in electro-deposited FeCo alloy films.The FeCo alloy films were prepared by the electro-deposition method with and without an external magnetic field applied parallel to the film plane during deposition.Vibrating sample magnetometry and Mo¨ssbauer spectroscopy measurements at room temperature indicate that the film deposited in external field shows an in-plane uniaxial anisotropy with an easy direction coinciding with the external field direction and a hard direction perpendicular to the field direction,whereas the film deposited without external field does not show any in-plane anisotropy.Mo¨ssbauer spectra taken in three geometric arrangements show that the magnetic moments are almost constrained in the film plane for the film deposited with applied magnetic field.Also,the magnetic moments tend to align in the direction of the applied external magnetic field during deposition,indicating that the observed anisotropy should be attributed to directional ordering of atomic pairs.  相似文献   

10.
晏世雷  朱海霞 《中国物理》2006,15(12):3026-3032
This paper studies the critical behaviours and magnetic properties of three-dimensional bond and anisotropy dilution Blume--Capel model (BCM) in the presence of an applied field within the effective field theory. The trajectory of tricritical point, reentrant transitions and degenerate patterns of anisotropy are obtained both for the bond and the anisotropy dilutions. The global phase diagrams demonstrate unusually reentrant phenomena. The temperature dependences of magnetization curves undergo remarkable spin glass behaviour at low temperatures, and transform from ferromagnetism to paramagnetism at high temperature in applied fields. Temperature dependence of magnetic susceptibility curve is in qualitative agreement with experimental result.  相似文献   

11.
The magnetic properties of exchange coupled composite (ECC) media that are composed of perpendicular magnetic recording media FePt MgO and two kinds of soft layers have been studied by using an x-ray diffractometer, a polar Kerr magneto-optical system (PMOKE) and a vibrating sample magnetometer (VSM). The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO. The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process, for ECC media of this kind mainly follow the Stoner Wohlfarth model.  相似文献   

12.
《中国物理 B》2021,30(5):57503-057503
We used the Jordan–Wigner transform and the invariant eigenoperator method to study the magnetic phase diagram and the magnetization curve of the spin-1/2 alternating ferrimagnetic diamond chain in an external magnetic field at finite temperature. The magnetization versus external magnetic field curve exhibits a 1/3 magnetization plateau at absolute zero and finite temperatures, and the width of the 1/3 magnetization plateau was modulated by tuning the temperature and the exchange interactions. Three critical magnetic field intensities H_(CB), H_(CE) and H_(CS) were obtained, in which the H_(CB) and H_(CE) correspond to the appearance and disappearance of the 1/3 magnetization plateau, respectively, and the higher H_(CS) correspond to the appearance of fully polarized magnetization plateau of the system. The energies of elementary excitation ωσ,k(σ = 1, 2, 3) present the extrema of zero at the three critical magnetic fields at 0 K, i.e., [hω_(3,k)(HCB)]_(min)= 0, [hω_(2,k)(H_(CE))]_(max)= 0 and [hω _(2,k)(H_(CS))]_(min)= 0, and the magnetic phase diagram of magnetic field versus different exchange interactions at 0 K was established by the above relationships. According to the relationships between the system's magnetization curve at finite temperatures and the critical magnetic field intensities, the magnetic field-temperature phase diagram was drawn. It was observed that if the magnetic phase diagram shows a three-phase critical point, which is intersected by the ferrimagnetic phase, the ferrimagnetic plateau phase, and the Luttinger liquid phase, the disappearance of the1/3 magnetization plateau would inevitably occur. However, the 1/3 magnetization plateau would not disappear without the three-phase critical point. The appearance of the 1/3 magnetization plateau in the low temperature region is the macroscopic manifestations of quantum effect.  相似文献   

13.
We study the precessional switching of a single domain, uniaxial magnetic disk with shape anisotropy by the micromagnetic simulation. The results show that magnetic switching can be driven by a smaller magnetic field pulse in an elliptic disk with its long semiaxis perpendicular to the easy axis than in a circular disk. The shape anisotropy can change the height of the energy barrier, thus we may obtain an optimal fast magnetization switching by tuning the aspect ratio of the disk under the thermal stability condition. The switching behavior of the elliptic and circular disks is studied in detail It is found that only properly choosing the pulse amplitude and duration can realize the fast precessional switching.  相似文献   

14.
Esra Aciksoz  Orhan Bayrak  Asim Soylu 《中国物理 B》2016,25(10):100302-100302
The behavior of a donor in the GaAs–Ga_(1-x)Al_xAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters(De, re, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential.  相似文献   

15.
Hysteresis loops and energy products have been calculated systematically by a three-dimensional(3D) software OOMMF for Sm–Co/α-Fe/Sm–Co trilayers with various thicknesses and β, where β is the angle between the easy axis and the field applied perpendicular to the film plane. It is found that trilayers with a perpendicular anisotropy possess considerably larger coercivities and smaller remanences and energy products compared with those with an in-plane anisotropy.Increase of β leads to a fast decrease of the maximum energy product as well as the drop of both remanence and coercivity. Such a drop is much faster than that in the single-phased hard material, which can explain the significant discrepancy between the experiment and the theoretical energy products. Some modeling techniques have been utilized with spin check procedures performed, which yield results in good agreement with the one-dimensional(1D) analytical and experimental data, justifying our calculations. Further, the calculated nucleation fields according to the 3D calculations are larger than those based on the 1D model, whereas the corresponding coercivity is smaller, leading to more square hysteresis loops and better agreement between experimental data and the theory.  相似文献   

16.
The realization of perpendicular magnetization and perpendicular exchange bias(PEB)in magnetic multilayers is important for the spintronic applications.NiO(t)/[Ni(4 nm)/Pt(1 nm)]2multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO;(001)substrates.Perpendicular magnetization can be achieved when t<25 nm.Perpendicular magnetization originates from strong perpendicular magnetic anisotropy(PMA),mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers.The PMA energy constant decreases monotonically with increasing t,due to the weakening of Ni(001)orientation and a little degradation of the Ni–Pt interface.Furthermore,significant PEB can be observed though NiO layer has spin compensated(001)crystalline plane.The PEB field increases monotonically with increasing t,which is considered to result from the thickness dependent anisotropy of the NiO layer.  相似文献   

17.
We have systematically studied the behaviors of the resistivity and magnetization of CeSb_2 single crystals as a function of temperature and external field. Four anomalies in the resistivity/magnetization-versus-temperature curves are observed at low magnetic field. They are located at 15.5 K, 11.5 K, 9.5 K, and 6.5 K, corresponding to the paramagnetic–magnetically ordered state(MO), MO-antiferromagnetic(AFM), AFM–AFM, and AFM–ferromagnetic(FM) transitions, respectively.The anomaly at 9.5 K is only visible with H‖[010] by magnetic susceptibility measurements, indicating that the AFM–AFM transition only happens along [010] direction in ab-plane. The four magnetic transitions are strongly suppressed by high external field. Finally, the field-temperature phase diagrams of CeSb_2 with different orientations of the applied field in ab-plane are constructed and indicate the highly anisotropic nature of the magnetization of CeSb_2.  相似文献   

18.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

19.
The influence of the interface exchange coupling on the magnetization reversal process for a FePt/α-Fe/FePt tri-layer structure has been studied through a micromagnetic approach.The analytical formula of the nucleation field has been derived.It is found that the nucleation field increases as the interface coupling constant rises.Especially when the thickness of the soft layer is small,the influence of the exchange coupling on the nucleation field is significant.The angular distributions of the magnetization for various exchange coupling constants have been obtained by numerical calculation.It is found that the angular distribution of the magnetization is discontinuous at the interface of the hard and soft layers.In the meantime,the pinning field decreases with the increase of the thickness of the soft layer and the exchange coupling constant.  相似文献   

20.
The critical currents of YBa2Cu3O7-x thin films have been measured at 74. 3K in magnetic fields up to 2.1T and at the temperature range from 64K to Tc in the absence of the field. Jc-B and Jc-T data were fitted to the flux creep model. The values of pinning energy and number density of pinning centers were obtained from the fits. The results show that the measured critical current density is flux-creep-limited and is several times smaller than Jco, the critical current density in the absence of flux creep. The distribution of pinning energies and inhomogeneity may be responsible for the discrepancy of pinning energy values obtained from different methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号