首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a scheme for conditional quantum logic between two 3-state atoms that share a quantum data bus such as a single mode optical field in cavity QED systems, or a collective vibrational state of trapped ions. Making use of quantum interference, our scheme achieves successful conditional phase evolution without any real transitions of atomic internal states or populating the quantum data bus. In addition, it requires only common addressing of the two atoms by external laser fields.  相似文献   

2.
We generalize the scheme of Lacour et al. [X. Lacour, N. Sangouard, S. Guerin, H.R. Jauslin, Phys. Rev. A 73 (2006) 042321] to the case of nonlocal qubits, which makes the resultant gate suitable for distributed quantum computation. In our scheme, two remote atomic qubits are separately trapped in two distant cavities connected by an optical fiber. Based on adiabatic passage, our scheme is immune to the decoherence due to spontaneous emission and to photon decay from the cavity modes and the fiber mode. Moreover, our scheme can work robustly beyond the Lamb–Dicke limit. It is shown that the minimum fidelity of the resultant gate operation for an arbitrary input state could be over 0.98.  相似文献   

3.
We propose a scheme to implement a quantum controlled-NOT (CNOT) gate between two four-level atoms inside the detuned optical cavity. The system state is evolved inside the decoherence-free (DF) subspace through stimulated Raman processes, which yields the desired unitary evolution operation for the CNOT.Our scheme is immune to decoherence due to dissipation of cavity excitation and spontaneous emission from the excited atomic level.  相似文献   

4.
The time-dependent multilevel approach(TDMA) and B-spline expansion technique are used to study the coherent population transfer between the quantum states of a potassium atom by a single frequency-chirped microwave pulse.The Rydberg potassium atom energy levels of n=6-15,l=0-5 states in zero field are calculated and the results are in good agreement with other theoretical values.The time evolutions of the population transfer of the six states from n=70 to n=75 in different microwave fields are obtained.The results show that the coherent control of the population transfer from the lower states to the higher ones can be accomplished by optimizing the microwave pulse parameters.  相似文献   

5.
李小红  张现周  张瑞州  杨向东 《中国物理》2007,16(10):2924-2929
Using the time-dependent multilevel approach, we have calculated the coherent population transfer between the quantum states of potassium atom by a single frequency-chirped laser pulse. The result shows that a pair of sequential `broadband' frequency-chirped laser pulses can efficiently transfer population from the initial state of the ladder system to the target state. It is also found that the population can be efficiently transferred to a target state and trapped there by using an `intuitive' or a `counterintuitive' frequency sweep laser pulse in the case of `narrowband' frequency-chirped laser pulse. Our research shows that the complete population transfer is related to the pulse duration, chirp rate, and amplitude of the laser pulse.  相似文献   

6.
This paper presents a direct implementation scheme of the non-local multi-qubit controlled phase gate by using optical fibres and adiabatic passage. The smaller operation number for implementing the multi-qubit controlled phase gate and needlessness for addressing individually save physical resource and lower the difficulties of experiment. Mean- while, the scheme is immune from some decoherence effects such as the atomic spontaneous emission and fibre loss. In principle, it is scalable.  相似文献   

7.
We present a demonstrative application of the nonholonomic control method to a real physical system composed of two cold Cesium atoms. In particular, we show how to implement a CNOT quantum gate in this system by means of a controlled Stark field.  相似文献   

8.
运用含时多态展开方法和B-样条函数研究了啁啾频率微波场中里德伯钠原子的量子态之间的布居数迁移.计算了里德伯钠原子n=70-77的开普勒频率.计算了在不同的微波场中六个态的布居数从n=70到n=77随时间的迁移,布居数跃迁到最终态n=77达到了98%,这可以通过连续的单光子跃迁来实现.结果表明,通过优化微波脉冲参数可以实现从低态到较高态的布居跃迁的相干控制.  相似文献   

9.
We present a theoretical analysis of the implementation of an entangling quantum gate between two trapped Ca+ ions which is based on the dipolar interaction among ionic Rydberg states. In trapped ions, the Rydberg excitation dynamics is usually strongly affected by mechanical forces due to the strong couplings between electronic and vibrational degrees of freedom in inhomogeneous electric fields. We demonstrate that this harmful effect can be overcome using dressed states that emerge from the microwave coupling of nearby Rydberg states. At the same time. these dressed states exhibit long-range dipolar interactions which we use to implement a controlled adiabatic phase gate. Our study highlights a route toward a trapped ion quantum processor in which quantum gates are realized independently of the vibrational modes.  相似文献   

10.
A scheme is proposed to implement distributed quantum computation in decoherence-free subspaces (DFSs) via adiabatic passage. The logical single-qubit is encoded in two atoms trapped in a single-mode cavity and the cavities are connected by an optical fiber. Our scheme is immune from the decoherence due to dephasing in virtue of encoding scheme and the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. Furthermore, the decoherence due to photon decay is greatly suppressed since the fiber mode remains in a vacuum state and the populations of the cavities’ modes being excited can be negligible under certain condition. It is shown that the minimum fidelity of the resultant gate operation for an arbitrary input state could be over 0.97.  相似文献   

11.
本文用含时多态展开方法研究了在两束部分重叠的脉冲场驱动下布居数在钾原子量子态中的相干迁移。结果表明,布居数能否实现完全迁移取决于两个脉冲的持续时间和重叠程度,当脉冲的持续时间和重叠合适时,将发生布居数的完全迁移,并形成布居数囚禁。  相似文献   

12.
We propose and analyse experimentally feasible implementations of single-qubit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by elliptically polarized pulsed laser fields, in part based on a proposal by Kis and Renzoni [Z. Kis, F. Renzoni, Phys. Rev. A 65 (2002) 032318]. These techniques require only the control of the relative phase of the driving fields but do not involve any dynamical or geometric phases, which makes it independent of the other interaction details: detuning, pulse shapes, pulse areas and pulse durations. The suggested techniques are immune to spontaneous emission since the qubit manipulation proceeds through non-absorbing dark states. We also propose an alternative technique using compensation of dynamical Stark shifts by two consecutive non-resonant fractional-STIRAP processes.  相似文献   

13.
We propose a scheme for implementing two-qubit geometric phase gate via the adiabatic evolution for trapped ions in thermal motion, leveraging on the stimulated Raman adiabatic passage with the geometric phase mechanism. Evolution along a dark state makes our scheme not only immune from decoherence due to spontaneous emission from excited states, but also rid off the dynamical phase. Furthermore, due to the opposite detuning of the driving lasers, the vibrational states of the trapped ions are only virtually excited during the operations, so our scheme is also insensitive to the occupation number of the vibrational mode.  相似文献   

14.
本文讨论同时囚禁于单模、大失谐腔场中两个不同原子构成的系统,结论指出:只要仔细选择两不同原子的跃迁频率差、原子与腔场相互作用时间,可实现一个快速的量子相位门。这一方案不需要辅助的原子能级。  相似文献   

15.
We study an open quantum system of atoms with a long-range Rydberg interaction, laser driving, and spontaneous emission. Over time, the system occasionally jumps between a state of low Rydberg population and a state of high Rydberg population. The jumps are inherently collective, and in fact, exist only for a large number of atoms. We explain how entanglement and quantum measurement enable the jumps, which are otherwise classically forbidden.  相似文献   

16.
This paper proposes a scheme for implementing the adiabatic quantum search algorithm of different marked items in an unsorted list of N items with atoms in a cavity driven by lasers. N identical three-level atoms are trapped in a single-mode cavity. Each atom is driven by a set of three pulsed laser fields. In each atom, the same level represents a database entry. Two of the atoms are marked differently. The marked atom has an energy gap between its two ground states. The two different marked states can be sought out respectively starting from an initial entangled state by controlling the ratio of three pulse amplitudes. Moreover, the mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided since the dynamics follows the dark state. Furthermore, this paper extends the algorithm with m (m>2) atoms marked in an ideal situation. Any different marked state can be sought out.  相似文献   

17.
A scheme is proposed for generating a four-dimensional entangled state for two atoms trapped in a cavity by one step via adiabatic passage. The scheme does not need the exact control of the experimental parameters and the evolution time. Its predominant decohence factor depends on the magnitude of classical Rabi frequencies, therefore, there exists a reasonable value range of Rabi frequencies of the classical fields. Numerical simulation indicates that the excited probabilities of the atoms and the cavity modes are very small, so the scheme is very robust against decoherence. The four-dimensional entanglement can be generated with a high fidelity with present technique.  相似文献   

18.
马宋设  陈美锋  蒋夏萍 《中国物理 B》2011,20(12):120308-120308
A scheme is proposed for generating a three-dimensional entangled state for two atoms trapped in a cavity by one step via adiabatic passage. In the scheme, the two atoms are always in ground states and the field mode of the cavity excited is negligible under a certain condition. Therefore, the scheme is very robust against decoherence. Furthermore, it needs neither the exact control of all parameters nor the accurate control of the interaction time. It is shown that qutrit entanglement can be generated with a high fidelity.  相似文献   

19.
The energy states in semiconductor quantum dots are discrete as in atoms, and quantum states can be coherently controlled with resonant laser pulses. Long coherence times allow the observation of Rabi flopping of a single dipole transition in a solid state device, for which occupancy of the upper state depends sensitively on the dipole moment and the excitation laser power. We report on the robust population inversion in a single quantum dot using an optical technique that exploits rapid adiabatic passage from the ground to an excited state through excitation with laser pulses whose frequency is swept through the resonance. This observation in photoluminescence experiments is made possible by introducing a novel optical detection scheme for the resonant electron hole pair (exciton) generation.  相似文献   

20.
Based on adiabatic passage, we propose a scheme for implementing the quantum transfer of an unknown atomic state. In our scheme, we utilize photons for ideal quantum transmission between two cavities with the successful probability being about 1. Meanwhile, the scheme is robust against the effects of atomic spontaneous emission. It may be useful for transferring quantum information among spatially distant atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号