首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Investigations into the structural, electronic and elastic properties of intermetallic CuZr compound had been conducted by the plane-wave pseudopotential method. The calculated lattice constant was consistent well with the experimental value. The absence of band gap and finite value of the density of states (DOS) at the Fermi level reveal the metallic behavior of CuZr crystal, and Zr 4d states give rise to the electrical conductivity. The calculated elastic constants for single crystal CuZr at zero pressure obey the cubic mechanical stability condition, which indicates that the cubic CuZr crystal is mechanical stable at zero pressure. By analyzing the ratio between the bulk and shear moduli, we conclude that CuZr crystal is ductile in nature. The present theoretical investigations might give prediction to polycrystalline CuZr system.  相似文献   

2.
The structural, elastic and electronic properties of TiC, ZrC, HfC and TaC have been investigated by first-principles calculations using the plane-wave pseudopotential method. Different exchange-correlation functionals regarding the local density approximation and the PBE, RPBE and PW91 forms of generalized gradient approximation are taken into account. The NaCl-type cubic structures of TMC (TM=Ti, Zr, Hf and Ta) are optimized and confirmed to be mechanically stable. The elastic properties such as the elastic constants, bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio of TMC are investigated, and the performances of LDA and GGA are discussed. The electronic density of state, electron charge density and Mulliken population analysis have been explored to discuss the electronic properties and bonding behaviors of TMC. The present calculation results compare satisfactorily with the experimental data and previous theoretical calculations.  相似文献   

3.
Electronic structure and mechanical properties of cubic crystallographic structures with point defects in Al-based alloys are investigated using the first-principles calculations. Equilibrium structural parameters and mechanical parameters such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio and anisotropy are calculated and agreed well with experimental values. Effects of point defects on the electronic structures and mechanical properties of such cubic phases are further analyzed and discussed in view of the charge density and the density of states.  相似文献   

4.
A detailed theoretical study of structural, electronic, and elastic properties of cubic UAlx (x=1,2,3) is presented employing the pseudopotential plane-wave method based on density-functional theory. The structure parameters of these three compounds have been calculated within generalized gradient approximation (GGA) and local density approximation (LDA). The calculated results were compared with the experimental data and previous research. With the GGA approximation, the elastic constants, shear modulus, Young's modulus, and Poisson's ratio of UAlx (x=1,2,3) are derived. According to the generalized mechanical stability criteria for cubic crystals, our calculation suggested that C15 UAl2 and L12 UAl3 are stable substance under hydrostatic pressures, but B2 UAl might be expected as a metastable compound, which is not reported in previous literature, and future experimental confirmation is needed. Furthermore, the calculated energy band structure and density of state (DOS) are found to be in good agreement with the theoretical values. Additionally, the charge density of these compounds have also been worked out and analyzed.  相似文献   

5.
黄梦礼  王崇愚 《中国物理 B》2016,25(10):107104-107104
The effects of boron and carbon on the structural, elastic, and electronic properties of both Ni solution and Ni_3Al intermetallics are investigated using first-principles calculations. The results agree well with theoretical and experimental data from previous studies and are analyzed based on the density of states and charge density. It is found that both boron and carbon are inclined to occupy the Ni-rich interstices in Ni_3Al, which gives rise to a cubic interstitial phase. In addition,the interstitial boron and carbon have different effects on the elastic moduli of Ni and Ni_3Al. The calculation results for the G/B and Poisson's ratios further demonstrate that interstitial boron and carbon can both reduce the brittleness of Ni, thereby increasing its ductility. Meanwhile, boron can also enhance the ductility of the Ni_3Al while carbon hardly has an effect on its brittleness or ductility.  相似文献   

6.
The structural, mechanical, electronic and optical properties of orthorhombic PtSi and PtGe were investigated using norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory. The calculated lattice parameters and bulk modulus for PtSi and PtGe have been compared with the experimental and theoretical values. The second-order elastic constants were calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities and Debye temperature have also been estimated. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valance electrons and the effective optical dielectric constant were calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data.  相似文献   

7.
By using first‐principles calculations, the authors investigate the structural, mechanical, and electronic properties of experimentally synthesized Os0.5W0.5B2. The calculated structural parameters and elastic properties are in good agreement with the experimental results. In addition, two new 5d transition‐metal diborides (Re0.5W0.5B2 and Os0.5Re0.5B2) are predicted to have promising large shear moduli. The latter mainly come from the non‐uniform distribution of valence charge density, which raises the value of the shear moduli. We discuss potentially high hardness in these materials. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

9.
A theoretical study of structural, electronic and optical properties of cubic BaTiO3 and BaZrO3 perovskites is presented, using the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus, its pressure derivative, band structure, density of states, pressure coefficients of energy gaps and refractive indices. The results are compared with previous calculations and experimental data.  相似文献   

10.
The structural, electronic and elastic properties of Rb–As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3 As in Na3As, Cu3 P and Li3Bi structures, and Rb5 As4 in the A5B4 structure) are investigated with the generalized gradient approximation in the frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan’s equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young’s modulus, the shear modulus, Poisson’s ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated.  相似文献   

11.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

12.
H. Koc  A. Yildirim  E. Deligoz 《中国物理 B》2012,21(9):97102-097102
The structural, elastic, electronic, optical, and vibrational properties of cubic PdGa compound are investigated using the norm-conserving pseudopotentials within the local density approximation (LDA) in the framework of the density functional theory. The calculated lattice constant has been compared with the experimental value and has been found to be in good agreement with experimental data. The obtained electronic band structures show that PdGa compound has no band gap. The second-order elastic constants have been calculated, and the other related quantities such as the Young’s modulus, shear modulus, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature have also been estimated. Our calculated results of elastic constants show that this compound is mechanically stable. Furthermore, the real and imaginary parts of the dielectric function and the optical constants such as the electron energy-loss function, the optical dielectric constant and the effective number of electrons per unit cell are calculated and presented in the study. The phonon dispersion curves are also derived using the direct method.  相似文献   

13.
We have investigated the structural, mechanical and lattice dynamical properties of ZrW2 and HfW2 compounds in cubic C15 (space group Fd-3m), hexagonal C14 (space group P63/mmc) and C36 (space group P63/mmc) phases using generalized gradient approximation within the plane-wave pseudo-potential density functional theory. We have found that ZrW2 and HfW2 in cubic C15 phase are the most stable among the considered phases. From calculated elastic constants, it is shown that all phases are mechanically stable according to the elastic stability criteria. The related mechanical properties, such as bulk, shear and Young moduli, Poisson’s ratio, Debye temperature and hardness have been also calculated. The results show that ZrW2 and HfW2 compounds are ductile in nature with respect to the B/G and Cauchy pressure analysis. The phonon dispersion curves, phonon density of states and some thermodynamic properties are computed and discussed exhaustively for considered phases.  相似文献   

14.
The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys Pt Pd X(X= Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties.We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.  相似文献   

15.
利用第一性原理的计算方法,在维也纳从头计算模拟包(VASP)中计算了三种比例Re原子掺杂Os B4的结构特征及稳定性、电子性质及力学性能.将P42/nmc相Os B4中的Os元素进行Re元素的替代掺杂,并构建出Os1-xRexB4(x=0,0.0625,0.125,0.25)固溶体系的结构模型.结果表明:随Re含量的增高Os1-xRexB4的晶格常数和体积会略微增大,在x高于0.25后发生结构畸变;且P42/nmc-Os1-xRexB4(x=0,0.0625,0.125)的结构和热力学稳定;态密度主要来源于Os的5d电子和B的2s和2p电子,而Re原子的5d轨道电子对价带和导带态密度也均有贡献,并且随其含量的增高态密度峰值也增大;B-B键和B-Os键具有强共价相互作用是其具有较高的体积和剪切模量的主要原因.随着Re元素的浓度增加,结构的导电性和延展...  相似文献   

16.
We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural, elastic, mechanical, electronic, and optical properties of cubic Mg2TiO4. The calculated lattice parameter a is in good agreement with the experimental values. The independent elastic constants are calculated. The mechanical properties including bulk, shear and Young’s modulus, Poisson’s coefficient, compressibility and Lamé’s constants are obtained using the Voigt-Reuss-Hill method. Debye temperature is estimated using the Debye-Grüneisen model. Band structure, density of states and charge densities are shown and analyzed. In order to clarify the mechanism of optical transitions of cubic Mg2TiO4, the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and complex conductivity function are calculated.  相似文献   

17.
Predicted results of the structural, electronic and optical properties of the cubic zinc-blende phase of BN, BAs and BP binary compounds and their related ternary and quaternary alloys are presented. The density functional theory (DFT) within full potential linearized augmented plan wave (FP-LAPW) is employed. Different exchange correlation approximations were used to calculate the structural properties as well as the total energies, lattice parameters, bulk modulus and its first pressure derivative. The electronic band structures were treated with the local density approach and Tran Blaha modified Beck-Johnson (TB-mBJ) approximation. A quadratic fit of the lattice parameter, bulk modulus and band gap was performed, where a nonlinear variation with the composition x and y is found. Moreover, the optical properties have been investigated, where the dielectric behavior, the refractive index variations and the loss energy were studied. Furthermore, the electronic and optical properties were computed under hydrostatic pressure. Our results showed great agreement with the previous available experimental and theoretical data found in the literature.  相似文献   

18.
The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm−1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.  相似文献   

19.
First‐principles density functional calculations are employed to provide a fundamental understanding of the structural features, mechanical properties, deformation behaviours and its electronic origin for the new synthesized FeB4. The calculated elastic moduli suggest that FeB4 has a low compressibility, but results of ideal shear strength and theoretical hardness indicate that FeB4 is a hard material, not a superhard material. We find that the collapse of the unique corrugated B6 units ring in FeB4 under deformation is responsible for the failure under tensile and shear deformation based on the calculated charge density distribution and bonding evolution. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A first-principles calculations, based on the norm-conserving pseudopotentials and the density functional theory (DFT) and the density functional perturbation theory (DFPT) as implemented in the ABINIT code, have been performed to investigate the structural stability, elastic, lattice dynamic and thermodynamic properties of the ordered SiGe, SiSn and GeSn cubic alloy in zinc-blende (B3) structure. The calculated lattice parameters and bulk modulus agree with the previous results. The second-order elastic constants have been calculated and other related quantities such as the Young’s modulus, shear modulus, anisotropy factor are also estimated. We also obtain the data of lattice dynamics and the temperature dependent properties currently lacking for SiGe, SiSn and GeSn. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as the internal energy, Helmholtz free energy, entropy and heat capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号