首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray reflectivity and atomic force microscopy analyses were performed in the Si/WTi (7 nm)/NiFe (5 nm)/FeMn (13 nm)/WTi (7 nm) exchange-biased system prepared by magnetron sputtering. Layer-by-layer analyses were done in order to have interfacial roughness parameters quantitatively. X-ray reflectivity results indicate that the successive layer deposition gives rise to a cumulative roughness. In addition, the atomic force microscopic images analyses have revealed that the roughness enhancement caused by the successive layer deposition can be associated with an appearance of a longer wavelength roughness induced by the NiFe layer deposition.  相似文献   

2.
We have studied local magnetization reversal by laser annealing in exchange biased NiFe/FeMn bilayer. Local magnetization reversal was performed by using the Nd:YAG laser under external magnetic field. When the laser illuminated the patterned film with the power of above 300 mW during 15 min, a magnetoresistance (MR) curve with symmetric peaks at the opposite field was obtained due to the local reversal of exchange biasing. A similar result was observed in NiFe/FeMn/NiFe trilayer. As the exposed area expanded, the intensity of opposite MR peak increased. The direction of exchange anisotropy in the partially reversed region can be restored by local laser annealing under alternating magnetic field, even if its MR peak was reduced by the damage and interdiffusion. The magnetic new domain structures of the partially reversed region was generated by laser annealing near the exposed area.  相似文献   

3.
The magnetization reversal of the bilayer polycrystalline FeNi(50 Å)/FeMn(50 Å) film sputtered in a magnetic field has been studied by magnetic and magneto-optical techniques. The external magnetic fields were applied along the easy or hard magnetization axis of the ferromagnetic permalloy layer. The asymmetry of hysteresis loop has been found. Appreciable asymmetry and the exchange bias were observed only in the field applied along the easy axis. The specific features of magnetization reversal were explained within the phenomenological model that involves high-order exchange anisotropy and misalignment of the easy axes of the antiferromagnetic and ferromagnetic layers. It has been shown that the film can exist in one of three equilibrium magnetic states in the field applied along the easy axis. The transitions between these states occur as first-order phase transitions. The observed hysteresis loop asymmetry is related to the existence of the metastable state.  相似文献   

4.
The parameters of the transition layer in exchange-biased film structures are necessary agents to understand the mechanism of formation of unidirectional anisotropy. The layer thickness in NiFe/DyCo films has been determined by comparison of signals of the polar magneto-optical Kerr effect from a reference DyCo film and a hard magnetic layer of the exchange-biased structure. The layer thickness obtained is one order of magnitude larger than that characteristic of ferromagnet-antiferromagnet bilayer films. The mechanism of magnetization reversal of the structure under study has been explained within the model suggesting the formation of 180° boundaries in the interface.  相似文献   

5.
Effect of low energy ion beam etching on exchange bias in NiFe/FeMn/NiFe trilayer is investigated in multilayers prepared by rf magnetron sputtering. Stepwise etching and magnetization measurement of FeMn layer in an NiFe/FeMn bilayer show increase of bias as etching proceeds and FeMn thickness decreases. The bias show a maximum around 7 nm FeMn thickness and then fall sharply below 5 nm, broadly in line with the exchange bias variation at increasing FeMn thickness but in reverse order, particularly at low FeMn thickness. Progressive etching of top NiFe layer in the NiFe/FeMn/NiFe trilayer shows an initial gradual increase in bias followed by a sharp increase below 7 nm thickness of top NiFe layer, with a maximum at 2 nm thickness for both NiFe layers and greater bias for seed NiFe layer.  相似文献   

6.
研究了在铁磁(NiFe)/反铁磁(FeMn)双层膜之间,交换偏置的形成过程和热稳定性,特别是NiFe/FeMn的交换偏置作用与FeMn层晶粒尺寸的关系.和以前作者不同的是,本文方法采用非磁性Ni-Fe-Cr合金作缓冲层材料,改变Cr的含量就可以获得不同晶粒尺寸的反铁磁FeMn层.实验表明,晶粒尺寸较小的FeMn产生较强的铁磁/反铁磁交换偏置场;但是,对于较大晶粒的FeMn层,出现交换偏置作用所要的临界厚度较小.这符合Mauri提出的理论模型.交换偏置场的热稳定性实验表明,具有较大晶粒尺寸的FeMn层给出较 关键词: 交换偏置 热稳定性 反铁磁 晶粒尺寸  相似文献   

7.
Experimental results show that Cu atoms can float out to or segregate to the NiFe/FeMn interface for Ta/NiFe/Cu/NiFe/FeMn/Ta spin-valve multilayers, which results in a drop of the exchange-coupling field (Hex) of NiFe/FeMn in the spin-valve multilayers. However, when a small amount of Bi atoms is deposited between the Cu and the pinned NiFe layers, Cu segregation to the NiFe/FeMn interface can be suppressed. At the same time, Hex of NiFe/FeMn in the spin-valve multilayers with a Bi interfacial layer can be effectively increased. PACS 75.70.Cn; 82.80.Pv  相似文献   

8.
We have studied the effect of roughness on the exchanged biased NiFe/FeMn/NiFe trilayers system. The samples were prepared under three different argon working pressures (2, 5 and 10 mTorr) to obtain different roughness degrees. The root mean square roughness of the NiFe/FeMn interfaces enhances as the argon working pressure during the deposition increases from 2 to 10 mTorr. High-angle X-ray diffraction reveals that the samples have 1 1 1 texture and besides, possible changes in grain size could be an extra contribution to the interfacial roughness. Magnetometry measurements have shown that the coervive field enhances as the root mean square roughness of the NiFe/FeMn interfaces increases, while the dependence of the exchange bias field runs in the opposite way.  相似文献   

9.
We have systematically investigated the influence of annealing on the magnetic anisotropy properties of GaMnAs film using an epilayer with a Mn concentration of 6.2%. The GaMnAs epilayer was grown by molecular beam epitaxy and the planar Hall effect measurement was used to monitor the magnetic anisotropy of the film. We found significant annealing-induced changes in the magnetic anisotropy properties of the GaMnAs film that depended on the annealing conditions. For example, the cubic anisotropy that gave a four-fold symmetry of magnetic easy axes decreased while the uniaxial anisotropy that gave a two-fold symmetry of magnetic easy axes increases in the samples annealed temperature below 300 °C. In particular, the uniaxial anisotropy along the [010] direction in as-grown GaMnAs film changed to the [100] direction by rotating by 90° after the sample was annealed at 300 °C for 3 h. This investigation thus indicates that the magnitude and the direction of the magnetic anisotropy in the GaMnAs film can be effectively controlled by choosing an appropriate annealing time and temperature.  相似文献   

10.
The influence of the Cu layer thickness on the magnetic and magnetotransport properties has been investigated in Ta/NiFe/Cu/NiFe/FeMn spin valves. The magnetization and magnetoresistance measurements were carried out for magnetic field applied along the easy-axis direction. A phenomenological model, which assumes formation of a planar domain wall at the anti-ferromagnetic side of the interfaces as well as bilinear coupling between the ferromagnetic layers, was used to derive the anisotropy characteristics and orientation of each NiFe layer magnetization. The anisotropy and spin valve magnetoresistance were simulated numerically and compared with the experiment. It was found that the anisotropy magnetoresistance is negligible and that there is a poor agreement for the spin-valve one, which was attributed to the model (valid for ferromagnetic layers in single-domain state only) used for its calculation. It was found that the increase of the Cu layer thickness provokes a decrease of the interdiffusion between the NiFe and FeMn layers, and, as consequence, changes of the uniaxial anisotropy of the pinned NiFe layer, of the exchange interaction between the pinned NiFe layer and the FeMn ones, as well as of the exchange-bias field of the pinned NiFe layer.  相似文献   

11.
12.
Planar Hall Effect (PHE) in NiFe(t)/IrMn(10.0 nm) thin film structures has been experimentally investigated as a function of NiFe thickness in the range from 3 to 20 nm, under the applied magnetic field perpendicular to the easy axis. The PHE voltage change and its field sensitivity increase with NiFe thickness, but the field interval of two voltage maxima decreases with the thickness. There are good agreements between measured and calculated PHE voltage profiles, where the parameters of exchange-biased and effective anisotropy fields have been characterized to decrease with NiFe thickness. However, an anisotropic resistivity change increases as the NiFe thickness increases. These analyses suggest that PHE is the effective method, inferred to single domain, to determine the electrical and magnetic parameters in magnetic devices.  相似文献   

13.
Nanowires of various inorganic materials have been fabricated due to the realization of their applications in different fields. Large-area and uniform cupric oxide (CuO) nanowires were successfully synthesized by a very simple thermal oxidation of copper thin films. The copper films were deposited by electron beam evaporation onto Ti/Si substrates, in which Ti film was first deposited on silicon substrate to serve as adhesion layer. The structure characterization revealed that these nanowires are monoclinic structured single crystallites. The effects of different growth parameters, namely, annealing time, annealing temperature, and film thickness on the fabrication of the CuO nanowires were investigated by scanning electron microscopy. A typical procedure simply involved the thermal oxidation of these substrates in air and within the temperature range from 300 to 700 °C. It is found that nanowires can only be formed at thermal temperature of 400 °C. It is observed that the growth time has an important effect on the length and density of the CuO nanowires, whereas the average diameter is almost the same, i.e.50 nm. Different from the vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism, the growth of nanowires is found to be based on the accumulation and relaxation of the stress.  相似文献   

14.
In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 °C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 °C, TiO2 phase begun to appear and it was well observed at 500 °C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.  相似文献   

15.
A comprehensive study of the influence of ferromagnetic thickness on the static and dynamic magnetic properties in exchange-biased FeCo/MnIr multilayers for both strong and weak exchange-bias coupling cases is presented. The results demonstrate that static and dynamic magnetic anisotropy fields decrease with ferromagnetic thickness in both cases. The rising of rotational anisotropy is discussed in conjunction with the enhanced coercivity and exchange bias by taking into account the roles of the rotatable and frozen antiferromagnetic spins in each of the two cases. Due to the contributions of the exchange bias and rotational anisotropy, the resonance frequency can be tailored up to 10 GHz. In addition, the behaviors of the frequency linewidth and the effective damping factor are discussed and ascribed to the dispersion of magnetic anisotropy.  相似文献   

16.
Iridium (Ir) thin films, deposited on Si (1 0 0) substrate by pulsed laser deposition (PLD) technique using Ir target in a vacuum atmosphere, were annealed in air ambient and the thermal stability was investigated. The crystal structure and surface morphology of Ir thin films before and after being annealed were studied by X-ray diffraction, Raman scattering, scanning electron microscope, and atomic force microscopy. The results showed that single-phase Ir thin films with (1 1 1) preferred orientation could be deposited on Si (1 0 0) substrate at 300 °C and it remained stable below 600 °C, which showed a promising bottom electrode of integrated ferroelectric capacitors. Ir thin films got oxidized to IrO2 at temperatures from 650 to 800 °C.  相似文献   

17.
Exchange biased IrMn/NiFe/IrMn thin films were studied as a function of NiFe thickness. In plane angular dependence of a resonance field distribution which is measured by FMR was analyzed as a combined effect of an unidirectional anisotropy and an uniaxial anisotropy. The unidirectional anisotropic field and the uniaxial anisotropic field were linearly varied with NiFe thickness while the films with a thicker NiFe layer do not follow the linear variation. Resonance field and linewidth variations were also analysed with NiFe thickness.  相似文献   

18.
Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50–80 nm.  相似文献   

19.
For polycrystalline NiFe/FeMn bilayers, we have observed and quantified the rotation of the pinning direction in the exchange bias training and recovery effects. During consecutive hysteresis loops, the rotation of the pinning direction strongly depends on the magnetization reversal mechanism of the ferromagnet layer. The interfacial uncompensated magnetic moment of antiferromagnetic grains may be irreversibly switched and rotated when the magnetization reversal process of the ferromagnet layer is accompanied by domain wall motion and domain rotation, respectively.  相似文献   

20.
The effect of annealing on the magnetic anisotropy and the thermal stability has been investigated for an amorphous Gd27Tb10Fe63 film prepared by magnetron sputtering. On the basis of a pseudodipolar interaction, a numerical computation is performed primarily on fitting a variance of the anisotropy constant with that of the thermal annealing at various temperatures and shows that a contribution from Tb-Fe pairs are dominant in determining the perpendicular anisotropy. Hc = Ku/Ms is used to describe the variance of coercivity after that heat treatment. The behaviour of annealing the films in air shows that the films with a protective Al film possess a good thermal stability for magneto-optical recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号