首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

2.
The coupling between system and reservoir is considered to be linear in the coordinates of the bath but nonlinear in the system's coordinate. A dissipative threshold is observed at finite temperatures due to nonlinear dissipation. The quantum decay rate of a metastable state including higher-order expanded terms of the coupling form function is proposed, which can be strongly decreased at finite temperatures when the quantum dissipative threshold is added to the saddle point of the potential.  相似文献   

3.
The coupling between system and reservoir is considered to be linear in the coordinates of the bath but nonlinear in the system‘s coordinate. A dissipative threshold is observed at finite temperatures due to nonlinear dissipation. The quantum decay rate of a metastable state including higher-order expanded terms of the coupling form function is proposed, which can be strongly decreased at finite temperatures when the quantum dissipative threshold is added to the saddle point of the potential.  相似文献   

4.
We proposed an entangled multi-knot lattice model to explore the exotic statistics of anyons. Long-range coupling interaction is a fundamental character of this knot lattice model. The short-range coupling models, such as the Ising model,Hamiltonian model of quantum Hall effect, fermion pairing model, Kitaev honeycomb lattice model, and so on, are the short-range coupling cases of this knot lattice model. The long-range coupling knot lattice model bears Abelian and nonAbelian anyons, and shows integral and fractional filling states like the quantum Hall system. The fusion rules of anyons are explicitly demonstrated by braiding crossing states. The eigenstates of quantum models can be represented by a multilayer link lattice pattern whose topology is characterized by the linking number. This topological linking number offers a new quantity to explain and predict physical phenomena in conventional quantum models. For example, a convection flow loop is introduced into the well-known Bardeen–Cooper–Schrieffer fermion pairing model to form a vortex dimer state that offers an explanation of the pseudogap state of unconventional superconductors, and predicts a fractionally filled vortex dimer state. The integrally and fractionally quantized Hall conductance in the conventional quantum Hall system has an exact correspondence with the linking number in this multi-knot lattice model. The real-space knot pattern in the topological insulator model has an equivalent correspondence with the Lissajous knot in momentum space. The quantum phase transition between different quantum states of the quantum spin model is also directly quantified by the change of topological linking number, which revealed the topological character of phase transition. Circularized photons in an optical fiber network are a promising physical implementation of this multi-knot lattice, and provide a different path to topological quantum computation.  相似文献   

5.
刘博阳  崔巍  戴宏毅  陈希  张明 《中国物理 B》2017,26(9):90303-090303
A novel quantum memory scheme is proposed for quantum data buses in scalable quantum computers by using adjustable interaction. Our investigation focuses on a hybrid quantum system including coupled flux qubits and a nitrogen–vacancy center ensemble. In our scheme, the transmission and storage(retrieval) of quantum state are performed in two separated steps, which can be controlled by adjusting the coupling strength between the computing unit and the quantum memory. The scheme can be used not only to reduce the time of quantum state transmission, but also to increase the robustness of the system with respect to detuning caused by magnetic noises. In comparison with the previous memory scheme, about 80% of the transmission time is saved. Moreover, it is exemplified that in our scheme the fidelity could achieve 0.99 even when there exists detuning, while the one in the previous scheme is 0.75.  相似文献   

6.
《中国物理 B》2021,30(5):54209-054209
We systematically investigate the four-wave mixing(FWM) spectrum in a dual-cavity hybrid optomechanical system,which is made up of one optical cavity with an ensemble of two-level atoms and another with a mechanical oscillator. In this work, we propose that the hybrid dual-cavity optomechanical system can be employed as a highly sensitive mass sensor due to the fact that the FWM spectrum generated in this system has a narrow spectral width and the intensity of the FWM can be easily tuned by controlling the coupling strength(cavity–cavity, atom–cavity). More fascinatingly, the dual-cavity hybrid optomechanical system can also be used as an all-optical switch in view of the easy on/off control of FWM signals by adjusting the atom-pump detuning to be positive or negative. The proposed schemes have great potential applications in quantum information processing and highly sensitive detection.  相似文献   

7.
We theoretically investigate the entanglement properties in a hybrid system consisting of an optical cavity–array coupled to a mechanical resonator. We show that the steady state of the system presents bipartite continuous variable entanglement in an experimentally accessible parameter regime. The effects of the cavity–cavity coupling strength on the bipartite entanglements in the field–mirror subsystem and in the field–field subsystem are studied. We further find that the entanglement between the adjacent cavity and the movable mirror can be entirely transferred to the distant cavity and mirror by properly choosing the cavity detunings and the coupling strength in the two-cavity case. Surprisingly, such a remote macroscopic entanglement tends to be stable in the large coupling regime and persists for environment temperatures at above 25 K in the three-cavity case. Such optomechanical systems can be used for the realization of continuous variable quantum information interfaces and networks.  相似文献   

8.
We study the spin-field and the spin-spin entanglement in the ground state of a spin-orbit coupled Bose–Einstein condensate. It is found that the spin-field and the spin-spin entanglement can be induced by the spin-orbit coupling. By mapping the system to the Dicke-like model,the system exhibits a quantum phase transition from a normal(spin balanced) phase to superradiant(spin polarized) phase. The Dicke-like phase transition can be captured by the spin-field and the spin-spin entanglement arising from the spin-orbit coupling. The spin-field and the spin-spin entanglement increase as the Raman coupling increases in the superradiant phase,while they decrease with the Raman coupling increasing in the normal phase. We also consider the effect of a finite detuning on these entanglement show that the presence of the detuning suppresses the spin-field and the spin-spin entanglement.  相似文献   

9.
We present a non-Markovian master equation for a qubit interacting with a general reservoir, which is derived according to the Nakajima-Zwanzig and the time convolutionless projection operator technique. The non-Markovian solutions and Markovian solution of dynamical decay of a qubit are compared. The results indicate the validity of non-Markovian approach in different coupling regimes and also show that the Markovian master equation may not precisely describe the dynamics of an open quantum system in some situation. The non-Markovian solutions may be effective for many qubits independently interacting with the heated reservoirs.  相似文献   

10.
A multi-channel synchronous demodulation system of a polarized low-coherence interferometer(PLCI) based on a matrix charge-coupled-device(CCD) is proposed and demonstrated. By using special designs, the system allows the signals from different channels to be received and demodulated synchronously. Multichannel air pressure experiments were implemented to verify the effectiveness of the proposed system. The experiment results showed that the Fabry–Perot(F–P) sensors could be demodulated synchronously with a high tolerance for light sources and sensors, which indicated that any sensor and light source that can be demodulated by PLCI were allowed to be employed, leading to a wide application in the field of multichannel synchronous measurement.  相似文献   

11.
Majeed Ur Rehman  A A Abid 《中国物理 B》2017,26(12):127304-127304
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number C_s for energy-bands of trilayer graphene having the essence of intrinsic spin–orbit coupling is analytically calculated. We find that for each valley and spin, C_s is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states,consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin–orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin–orbit(RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin–orbit coupling, while the other two layers have zero intrinsic spin–orbit coupling.Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.  相似文献   

12.
Enhancing light–matter interaction in cavity quantum electrodynamics has aroused widespread interests in on-chip quantum information processing. Here, we propose a hybrid nanotoroid–nanowire system to enhance photon–exciton interaction. A nanoscale gap is formed by placing a dielectric nanowire close to a dielectric nanotoroid, where the coupling coefficient between photon and emitter can achieve 5.55 times of that without nanogap. Meanwhile, the cavity loss and spontaneous emission of the emitter will remain at a small value to guarantee the realization of strong coupling. The method might hold promise for the research of nanophotonics,quantum optics, and novel optical devices.  相似文献   

13.
The effect of anisotropy caused by a confining potential on the properties of fermionic cold atoms in a triangular optical lattice is systematically investigated by using the dynamical cluster approximation combined with the continuous time quantum Monte–Carlo algorithm.The quantum phase diagrams which reflect the temperature–interaction relation and the competition between the anisotropic parameter and the interaction are presented with full consideration of the anisotropy of the system.Our results show that the system undergoes a transition from Fermi liquid to Mott insulator when the repulsive interaction reaches a critical value.The Kondo effect also can be observed in this system and the pseudogap is suppressed at low temperatures due to the Kondo effect.A feasible experiment protocol to observe these phenomena in an anisotropic triangular optical lattice with cold atoms is proposed,in which the hopping terms are closely related to the lattice confining potential and the atomic interaction can be adjusted via the Feshbach resonance.  相似文献   

14.
The absorption–dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap(PBG) have been studied. Due to the singular density of modes(DOM) in the isotropic PBG and the dynamically coherence induced by the coupling fields, modified reservoir-induced transparency and quantum interference-induced transparency emerge simultaneously. Their interaction leads to ultra-narrow spectral structure. As a result of closed-loop configuration, these features can be manipulated by the amplitudes and relative phase of the coherently driven fields. The position and width of PBG also have an influence on the spectra. The theoretical studies can provide us with more efficient methods to control the atomic absorption–dispersion properties, which have applications in optical switching and slow light.  相似文献   

15.
The coupling vertex of the Pomeron to nucleon is derived from QCD. A γμ coupling vertex and coupling strength of β= 6.0 GeV-1, which has been used commonly as a free parameter in literature, are obtained. The result leads a support to the belief that the Pomeron could be a tensor glueball ξ(2230) with quantum numbers of IGJPC = 0+2++ in nature.  相似文献   

16.
We experimentally demonstrate a reliable method based on a nanofiber to optimize the number of cold atoms in a magneto–optical trap(MOT) and to monitor the MOT in real time.The atomic fluorescence is collected by a nanofiber with subwavelength diameter of about 400 nm.The MOT parameters are experimentally adjusted in order to match the maximum number of cold atoms provided by the fluorescence collected by the nanofiber.The maximum number of cold atoms is obtained when the intensities of the cooling and re-pumping beams are about 23.5 mW/cm~2 and 7.1 mW/cm~2,respectively; the detuning of the cooling beam is-13.0 MHz, and the axial magnetic gradient is about 9.7 Gauss/cm.We observe a maximum photon counting rate of nearly(4.5 ± 0.1) × 10~5 counts/s.The nanofiber–atom system can provide a powerful and flexible tool for sensitive atom detection and for monitoring atom–matter coupling.It can be widely used from quantum optics to quantum precision measurement.  相似文献   

17.
For a quantum system with multiple degrees of freedom or subspaces, loss of coherence in a certain subspace is intimately related to the enhancement of entanglement between this subspace and another one. We investigate intra-particle entanglement in two-dimensional mesoscopic systems, where an electron has both spin and orbital degrees of freedom and the interaction between them is enabled by Rashba type of spin–orbit coupling. The geometric shape of the scattering region can be adjusted to produce a continuous spectrum of classical dynamics with different degree of chaos. Focusing on the spin degree of freedom in the weak spin–orbit coupling regime, we find that classical chaos can significantly enhance spin–orbit entanglement at the expense of spin coherence. Our finding that classical chaos can be beneficial to intra-particle entanglement may have potential applications such as enhancing the bandwidth of quantum communications.  相似文献   

18.
We investigate quantum heat transfer in a nonequilibrium qubit-phonon hybrid open system,dissipated by external bosonic thermal reservoirs.By applying coherent phonon states embedded in the dressed quantum master equation,we are capable of dealing with arbitrary qubit-phonon coupling strength.It is counterintuitively found that the effect of negative differential thermal conductance is absent at strong qubit-phonon hybridization,but becomes profound at weak qubit-phonon coupling regime.The underlying mechanism of decreasing heat flux by increasing the temperature bias relies on the unidirectional transitions from the up-spin displaced coherent phonon states to the down-spin counterparts,which seriously freezes the qubit and prevents the system from completing a thermodynamic cycle.Finally,the effects of perfect thermal rectification and giant heat amplification are unraveled,thanks to the effect of negative differential thermal conductance.These results of the nonequilibrium qubit-phonon open system would have potential implications in smart energy control and functional design of phononic hybrid quantum devices.  相似文献   

19.
杨万里  魏华  冯芒  安钧鸿 《中国物理 B》2009,18(9):3677-3686
We theoretically explore the possibility of realizing controllable thermal entanglement of effective spins in a four-qubit anisotropic Heisenberg XXZ coupling spin-star system constructed by coupled microcavities. We analyse the dependence of thermal entanglement in this system on temperature, inhomogeneity of the magnetic field, and anisotropy, which can be readily tuned via the external laser fields. The peculiar characteristic and the full controllability of the thermal entanglement are demonstrated to be useful for quantum information processing.  相似文献   

20.
Motivated by the growing interest in the novel quantum phases in materials with strong electron correlations and spin–orbit coupling, we study the interplay among the spin–orbit coupling, Kondo interaction, and magnetic frustration of a Kondo lattice model on a two-dimensional honeycomb lattice.We calculate the renormalized electronic structure and correlation functions at the saddle point based on a fermionic representation of the spin operators.We find a global phase diagram of the model at half-filling, which contains a variety of phases due to the competing interactions.In addition to a Kondo insulator, there is a topological insulator with valence bond solid correlations in the spin sector, and two antiferromagnetic phases.Due to the competition between the spin–orbit coupling and Kondo interaction, the direction of the magnetic moments in the antiferromagnetic phases can be either within or perpendicular to the lattice plane.The latter antiferromagnetic state is topologically nontrivial for moderate and strong spin–orbit couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号