首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钱懿  许晶波 《中国物理 B》2012,21(3):30305-030305
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

2.
高德营  高强  夏云杰 《中国物理 B》2017,26(11):110303-110303
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.  相似文献   

3.
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

4.
We investigate the dynamics of quantum discord in a system consisting of two Tavis-Cummings models, each of which contains two atoms driven by a classical field. We compare the dynamics of quantum discord for the system with that of entanglement and show that quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution. Furthermore, we examine the influence of the initial states and the classical field on the discord dynamics and find that the value of quantum discord can be improved by adjusting the classical driving field. Finally, the quantum discord of two atoms in dissipative cavity is also discussed.  相似文献   

5.
We investigate the entanglement dynamics of a quantum system consisting of two-level atoms interacting with vacuum or thermal fields with classical driving fields. We find that the entanglement of the system can be improved by adjusting the classical driving field. The influence of the classical field and the purity of the initial state on the entanglement sudden death is also studied. It is shown that the time of entanglement sudden death can be controlled by the classical driving fields. Particularly, the entanglement sudden death phenomenon will disappear if the classical driving fields are strong enough.  相似文献   

6.
The idea that quantum randomness can be reduced to randomness of classical fields (fluctuating at time and space scales which are essentially finer than scales approachable in modern quantum experiments) is rather old. Various models have been proposed, e.g., stochastic electrodynamics or the semiclassical model. Recently a new model, so called prequantum classical statistical field theory (PCSFT), was developed. By this model a “quantum system” is just a label for (so to say “prequantum”) classical random field. Quantum averages can be represented as classical field averages. Correlations between observables on subsystems of a composite system can be as well represented as classical correlations. In particular, it can be done for entangled systems. Creation of such classical field representation demystifies quantum entanglement. In this paper we show that quantum dynamics (given by Schrödinger’s equation) of entangled systems can be represented as the stochastic dynamics of classical random fields. The “effect of entanglement” is produced by classical correlations which were present at the initial moment of time, cf. views of Albert Einstein.  相似文献   

7.
We proposed a scheme for generating fully three-mode continuous-variable (CV) entanglement between three nondegenerate cavity modes in a single-atom laser. In our scheme, the single-atom laser consists of a four-level atom inside a triply resonant cavity, and the atomic coherence is induced by two classical laser fields driving the corresponding atomic transitions. To demonstrate the generation of entanglement, we numerically simulated the dynamics of this system, and the numerical simulation shows that the single-atom laser considered here can be seen as a three-mode CV entanglement amplifier even in the presence of cavity losses. Moreover, we also show that the generation of entanglement doesn’t depend intensively on the initial condition of cavity field, and the fully three-mode CV entanglement can be realized no matter the three entangled (nondegenerate) modes are initially in the same state or different states based on our scheme.  相似文献   

8.
We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise.The cavity is initially prepared in the vacuum state.Generally,the entanglement of two atoms decreases with the intensity of the thermal fields and the coupling strength of the two-level atoms to the thermal fields.However,we find that the entanglement of the quantum system can be enhanced by adjusting the frequency and the strength of the classical driving fields in the presence of white noise.  相似文献   

9.
We have studied the dynamics and transfer of the entanglement of the two identical atoms simultaneously interacting with vacuum field by employing the dressed-state representation. The two atoms are driven by classical fields. The influence of the initial entanglement degree of two atoms, the coupling strength between the atom and the classical field and the detuning between the atomic transition frequency and the frequency of classical field on the entanglement and atomic linear entropy is discussed. The initial entanglement of the two atoms can be transferred into the entanglement between the atom and cavity field when the dissipation is neglected. The maximally entangled state between the atoms and cavity field can be obtained under some certain conditions. The time of disentanglement of two atoms can be controlled and manipulated by adjusting the detuning and classical driving fields. Moreover, the larger the cavity decay rate is, the more quickly the entanglement of the two atoms decays.  相似文献   

10.
Kerr介质中J-C模型的色散近似耗散动力学   总被引:1,自引:0,他引:1  
应用全量子论研究了含Kerr介质的Jaynes-Cummings模型在色散近似下系统和子系统的相干性丢失及纠缠特性,在输入场为相干场假设下计算了线性熵.结果表明,原子相干性丢失与Kerr效应无关,场和原子-场系统的相干性丢失因Kerr介质的存在而增强,原子与场之间的纠缠因Kerr效应而受到压制,场的相干性时间演化规律在定性和定量两方面都受到腔耗的影响.Kerr介质对场线性熵的作用要通过腔耗才能展现出来.  相似文献   

11.
We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.  相似文献   

12.
利用并发度和线性熵作为纠缠度量研究了两个驱动两能级原子和真空场相互作用系统中的纠缠动力学特性,分析了经典驱动场频率、原子和经典场的耦合系数以及参数α对并发度和线性熵的影响。结果发现通过调控经典驱动场能够提高两原子之间和两原子与场之间的纠缠,实现两原子之间纠缠突然死亡现象的操控,理论上提供了一种调控纠缠的方式。  相似文献   

13.
Preventing quantum entanglement from decoherence effect is of theoretical and practical importance in the quantum information processing technologies.In this regard,we consider the entanglement dynamics of two identical qubits where the qubits which are coupled to two independent(Markovian and/or non-Markovian) as well as a common reservoir at zero temperature are further interacted with a classical driving laser field.Then,we study the preservation of generated two-qubit entanglement in various situations using the concurrence measure.It is shown that by applying the classical driving field and so the possibility of controlling the Rabi frequency,the amount of entanglement of the two-qubit system is improved in the off-resonance condition between the qubit and the central cavity frequencies(central detuning) in both non-Markovian and Markovian reservoirs.While the central detuning has a constructive role,the detuning between the qubit and the classical field(laser detuning) affects negatively on the entanglement protection.The obtained results show that long-living entanglement in the non-Markovian reservoir is more accessible than in the Markovian reservoir.We demonstrate that,in a common reservoir non-zero stationary entanglement is achievable whenever the two-qubit system is coupled to the reservoir with appropriate values of relative coupling strengths.  相似文献   

14.
In this paper, we study quantum correlation in separable systems termed quantum dissonance [K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)]. Firstly, we study the emergence of quantum dissonance between two atoms prepared in uncorrelated states and coupled to a single-mode thermal field. We show that even for situations when the thermal field cannot entangle the two atoms, it can nevertheless induce quantum dissonance between them. Then, we investigate the dynamics including the transfer in both Markovian and non-Markovian regimes of quantum dissonance due to dissipation modeled by two independent subsystems each of which consists of a leaky cavity containing a two-level atom and surrounded by a reservoir. The two subsystems possess some amount of atomic quantum dissonance at the beginning but do not interact with each other by any means later on. We show that the quantum dissonance can be transferred among the composite subsystems, but the way it evolves and is transferred may be very different compared to that of entanglement. Finally, we present an efficient method to refrain the unwanted transfer of quantum dissonance from interested systems to reservoirs.  相似文献   

15.
We study the entanglement of the superconducting charge qubit with the quantized electromagnetic field in a microwave cavity. It can be controlled dynamically by a classical external field threading the SQUID within the charge qubit. Utilizing the controllable quantum entanglement, we can demonstrate the dynamic process of the quantum storage of information carried by charge qubit. On the other hand, based on this engineered quantum entanglement, we can also demonstrate a progressive decoherence of charge qubit with quantum jump due to the coupling with the cavity field in quasi-classical state.  相似文献   

16.
Experimentally feasible scheme for teleportation of atomic entangled state via entanglement swapping is proposed in cavity quantum electrodynamics without joint Bell-state measurement. In the teleportation processes the interaction between atoms and a single-mode nonresonant cavity with the assistance of a strong classical driving field substitute the joint measurements. The discussion of the scheme indicates that it can be realized by current technologies.  相似文献   

17.
We investigate the effects of classical driving fields on the dynamics of purity, spin squeezing, and genuine multipartite entanglement (based on the Peres-Horodecki criterion ) of three two-level atoms within three separated cavities prepared in coherent states in the presence of decoherence. The three qubits are initially entangled and driven by classical fields. We obtain an analytical solution of the present system using the superoperator method. We find that the genuine multipartite entanglement measured by an entanglement monotone based on the Peres-Horodecki criterion can stay zero for a finite time and revive partially later. This phenomenon is similar to the sudden death of entanglement of two qubits and can be controlled efficiently by the classical driving fields. The amount of purity, spin squeezing, and genuine multipartite entanglement decrease with the increase of mean photon number of cavity fields. Particularly, the purity and genuine multipartite entanglement could be simultaneously improved by the classical driving fields. In addition, there is steady state genuine multipartite entanglement which can also be adjusted by the classical driving fields.  相似文献   

18.
宋明玉  吴耀德 《物理学报》2013,62(6):64207-064207
通过两个经典微波场驱动相应的原子精细跃迁诱导产生原子相干, 研究在双模单原子激光器中连续变量量子纠缠的制备和演化. 研究结果表明: 微波场强度可以有效地控制腔场纠缠特性; 通过调节相应的频率失谐, 能够同步增加腔场总的平均光子数、腔模间的纠缠时间和强度. 关键词: 四能级单原子 原子相干 连续变量纠缠  相似文献   

19.
The entanglement between two stationary qubits is a kind of valuable quantum resources in quantum information or quantum network. This paper investigates the time evolution of the entanglement between two atoms, which are initially prepared in the Bell states and each of which interacts with its own cavity field in the identical and non-identical double damping Jaynes-Cummings (J-C) system. It mainly considers the effect of the atomic spontaneous decay Γ and the decay of cavity field κ on the two-qubit entanglement in such system. While causing the decay of entanglement, Γ and κ can also play a positive role in the entanglement evolution, which may imply a way to better control and maintain the entanglement. What is more, the rules governing the transfer of entanglement between two-qubit subsystems in strong coupling regime are finally studied by taking Γ and κ into consideration.  相似文献   

20.
Sete EA  Das S 《Optics letters》2012,37(10):1733-1735
We show that a high degree of steady-state entanglement between two spatially separated and initially uncoupled qubits can be achieved via interaction with a quantized squeezed field in a cavity. The cavity field induces two-photon coherence, which is crucial in creating entanglement between the qubits. Optimum entanglement is obtained when the less dissipative qubit is incoherently pumped while the other dissipates the excitation. Given the current state-of-the-art in cavity quantum electrodynamics and squeezed light sources, our scheme presents an effective way for light-to-matter entanglement transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号