首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张拥华  王长 《中国物理》2006,15(3):649-653
Nonlinear optical properties of intersubband electrons in a 3-level quantum well under intense terahertz field are investigated by using a density matrix approach. The results show that the terahertz fields with different frequencies cause the distinct modulations of the intersubband absorptions. The terahertz-induced sideband and Autler--Towns splitting in the absorption spectrum are obtained, respectively for the terahertz-photon energy below and close to the transition energy between the ground and first excited state.  相似文献   

2.
We present theoretical results of intersubband linear optical absorption in the conduction band of a GaAsAlGaAs quantum well with an applied electric field taking into account the field dependent linewidth. Our analysis is based on the one electron density matrix formulation with intrasubband relaxation processes due to polar optical phonon scattering and tunneling of electrons. We show that (a) for an increasing electric field the absorption peak corresponding to the transition of states 1 → 2 is shifted higher in energy and (b) the peak amplitude increases if the Fermi level is fixed and decreases if the electron density in the well is fixed when an increasing electric field is applied. The linewidth broadening also reduces the peak absorption amplitude.  相似文献   

3.
Tunneling effect on the intersubband optical absorption in a GaAs/Al x Ga1- x As quantum well under simultaneous presence of intense non-resonant laser and static electric fields is theoretically investigated. Based on the shooting method the quasi-stationary energy levels and their corresponding linewidths are obtained. By considering the joint action of the two external fields the linear absorption coefficient is calculated by means of Fermi’s golden rule and taking into account the intersubband relaxation. We found that: (i) the linewidth broadening due to the electron tunneling has an appreciable effect on the absorption spectrum; (ii) a constant relaxation time adopted in the previous studies could not be justified even for moderate electric fields, especially in the laser dressed wells. Our model predicts that the number of absorption peaks can be controlled by the external applied fields. While in the high-electric fields the excited states become unbounded due to a significant tunneling of the electrons, for high laser intensities and low/moderate electric fields the absorption spectrum has a richer structure due to the laser-generated resonant states. The possibility of tuning the resonant absorption energies by using the combined effects of the static electric field and the THz coherent radiation field can be useful in designing new optoelectronic devices.  相似文献   

4.
We point out a novel manifestation of many-body correlations in the linear optical response of electrons confined in a quantum well. Namely, we demonstrate that along with the conventional absorption peak at a frequency omega close to the intersubband energy delta, there exists an additional peak at frequency h omega approximately = 2delta. This new peak is solely due to electron-electron interactions, and can be understood as excitation of two electrons by a single photon. The actual peak line shape is comprised of a sharp feature, due to excitation of pairs of intersubband plasmons, on top of a broader band due to absorption by two single-particle excitations. The two-plasmon contribution allows us to infer intersubband plasmon dispersion from linear absorption experiments.  相似文献   

5.
In this work, the linear and nonlinear optical properties are studied theoretically in asymmetric (CdS/ZnSe/BeTe)/(ZnSe/BeTe) quantum wells. The electronic states are calculated using the envelope wave function approximation and the intersubband transition energies are studied as a function of CdS and ZnSe well thicknesses as well as doping concentration. The optimum parameters carrying out the transition energy 0.8 eV (1.55 μm wavelength) are given. Results are presented for the linear, the third order nonlinear optical absorption and the refractive index changes in the studied heterostructure. Results show that the changes in the linear and the third order nonlinear optical absorption as well as refractive index change are as important as the temperature is high, the nonlinear terms must be taken into consideration especially near the resonance.  相似文献   

6.
The optical intersubband transitions and femtosecond dynamics of electrons in quantum well states in Ag/Fe(100) are investigated by interferometric time-resolved two-photon photoemission. The quantum well wave functions and transition probabilities are evaluated from the two-photon photoemission resonance energies and intensities using an extended phase accumulation model. Direct femtosecond pump-probe correlation measurements elucidate the importance of interfaces in confined structures.  相似文献   

7.
二维六方氮化硼(hBN)的点缺陷最近被发现可以实现室温下的单光子发射,而成为近年的研究热点.尽管其具有重要的基础和应用研究意义,hBN中发光缺陷的原子结构起源仍然存在争议.本文采用基于密度泛函理论的第一性原理计算,研究hBN单层中一种B空位附近3个N原子被C替代的缺陷(CN)3VB.在hBN的B空位处,3个N原子各自带一个在平面内的悬挂键及相应的未配对电子,而通过C替换可以消除未配对的电子.系统研究了(CN)3VB缺陷的几何结构、电子结构以及光学性质,结果表明,缺陷可以由一个对称的亚稳态经过原子结构弛豫变成1个非对称的、3个C原子连在一起的基态结构.缺陷的形成在hBN中引入了一些由缺陷悬挂σ键及重构的π键贡献的局域缺陷态.这些缺陷态可以导致能量阈值在2.58 eV附近的可见光内部跃迁.本文的工作有助于进一步理解hBN中点缺陷的构成及光学性质,为实验上探讨发光点缺陷的原子结构起源及其性质提供理论依据.  相似文献   

8.
半导体超晶格子带间跃迁光吸收理论研究   总被引:9,自引:7,他引:2  
从理论上研究了半导体超晶格子带间跃迁的光吸收性质,以GaAs/AlxGa1-xAs超晶格为例进行数值计算,分析了该材料的吸收系数随入射光光子能量、光场强度和超晶格结构参量(阱宽,垒宽,势垒高)的变化关系计算表明:随着入射光光子能量的变化,出现非对称的吸收峰;光强只改变吸收系数大小;超晶格结构参量会改变吸收谱的谱宽和吸收峰所对应的入射光频率随着超晶格阱宽(垒宽)的增大,吸收谱由宽变窄,吸收峰红移;随着超晶格Al组分变大,吸收谱变窄.  相似文献   

9.
The shape of the interband absorption peak in quantum wells with uneven heteroboundaries is studied theoretically. Although the large-scale variations of the ground level in strongly doped structures are screened, the energy of intersubband transitions remains inhomogeneous in the 2D plane due to unscreened changes of the energy of an excited level. The equations for intersubband polarization are derived taking into account the Coulomb contributions proportional to e 2 and leading to a depolarization shift and the exchange renormalization of the spectrum. The shape of the intersubband absorption peak is analyzed both in the local approximation and taking into account the nonlocality of the response in the 2D plane. In the case of single-layer irregularities of heteroboundaries, this mechanism makes the main contribution to the intersubband absorption peak broadening for the far and intermediate IR range.  相似文献   

10.
苏雪梅  卓仲畅  王立军  高锦岳 《中国物理》2002,11(11):1175-1178
We have investigated the dispersive properties of tunnelling-induced transparency in asymmetric double quantum well structures where two excited states are coupled by resonant tunnelling through a thin barrier in a three-level system of electronic subbands. The intersubband transitions exhibit high dispersion at zero absorption, which leads to the slow light velocity in this medium as compared with that in vacuum (c=3×108). The group velocity in a specific GaAs/AlGaAs sample is calculated to be vg=c/4.30. This structure can be used to compensate for the dispersion and energy loss in fibre optical communications.  相似文献   

11.
ABSTRACT

Using the two-dimensional (2D) diagonalisation method, the impurity-related electronic states and optical response in a 2D quantum dot with Gaussian confinement potential under nonresonant intense laser field are investigated. The effects of a hydrogenic impurity on the energy spectrum and binding energy of the electron and also intersubband optical absorption are calculated. The obtained numerical results show that the degeneracies of the excited electron states are broken and the absorption spectrum exhibits a redshift with the values of the laser field. The findings indicate a new degree of freedom to tune the performance of novel optoelectronic devices, based on the quantum dots and to control their specific properties by means of intense laser field and hydrogenic donor impurity. Using the same Gaussian confinement model, the electronic properties of a confined electron in the region of a spherical quantum dot are studied under the combined effects of on-centre donor impurity and a linearly polarised intense laser radiation. The three-dimensional problem is used to theoretically model, with very good agreement, some experimental findings reported in the literature related to the photoluminescence peak energy transition.  相似文献   

12.
Radiative transition in δ-doped GaAs superlattices with and without Al0.1Ga0.9As barriers is investigated by using photoluminescence at low temperatures. The experimental results show that the transition mechanism of δ-doped superlattices is very different from that of ordinary superlattices. Emission intensity of the transition from the electron first excited state to hole states is obviously stronger than that from the electron ground state to hole states due to larger overlap integral between wavefunctions of electrons in the first excited state and hole states. Based on the effective mass theory we have calculated the self-consistent potentials, optical transition matrix elements and photoluminescence spectra for two different samples. By using this model we can explain the main optical characteristics measured. Moreover, after taking into account the bandgap renormalization energy, good agreement between experiment and theory is obtained.  相似文献   

13.
刘翠红  陈传誉  马本堃 《物理学报》2002,51(9):2022-2028
利用密度矩阵的方法,得出了考虑极化子效应的量子盘的线性和非线性光吸收系数的解析表达式,并以GaAs为例讨论了光吸收系数与不同的入射光子能量和量子盘的厚度之间的关系.结果表明,极化子效应对吸收系数有相当的影响 关键词: 量子盘 光学吸收系数 极化子效应  相似文献   

14.
Considering the strong built-in electric field (BEF) induced by the spontaneous and piezoelectric polarizations and the intrasubband relaxation, we investigate the linear and nonlinear intersubband optical absorptions in InxGa1-xN/AlyGa1-yN strained single quantum wells (QWs) by means of the density matrix formalism. Our numerical results show that the strong BEF is on the order of MV/cm, which can be modulated effectively by the In composition in the QW. This electric field greatly increases the electron energy difference between the ground and the first excited states. The electron wave functions are also significantly localized in the QW due to the BEF. The intersubband optical absorption peak sensitively depends on the compositions of In in the well layer and Al in the barrier layers. The intersubband absorption coefficient can be remarkably modified by the electron concentration and the incident optical intensity. The group-III nitride semiconductor QWs are suitable candidate for infrared photodetectors and near-infrared laser amplifiers.  相似文献   

15.
One dimensional (1D) quantum wire structures are emerging as the new generation of semiconductor nanostructures offering exciting physical properties which have significant potential for novel device applications. These structures have been the subject of intensive investigation recently including extensive theoretical and experimental studies of their interband optical properties. In this work we present the results of our study of the intersubband optical transitions in 1D semiconductor quantum wires. The crescent shaped quantum wire structures used for this research were grown on non-planar GaAs substrates. The intersubband transition energy spectra, the selection rules, and the two dimensional envelope wavefunctions were theoretically investigated by using our new LENS (local envelope states) expansion. We present recent experimental results on modulation doped V-groove quantum wires, including PL, PLE, TEM, CL, and infrared polarization resolved spectroscopy. We have observed a very unusual absorption lineshape at the far-infrared wavelengths that we assigned to phonon assisted Fano resonance in a modulation doped quantum wire structure.  相似文献   

16.
Three strain-symmetrized Si/SiGe multi-quantum well structures, designed for probing the carrier lifetime of intrawell intersubband transitions between heavy hole 1 (HH1) and light hole 1 (LH1) states with transition energies below the optical phonon energy, were grown by molecular beam epitaxy at low temperature on fully relaxed SiGe virtual substrates. The grown structures were characterized by using various experimental techniques, showing a high crystalline quality and very precise growth control. The lifetime of the LH1 excited state was determined directly with pump-probe spectroscopy. The measurements indicated an increase of the lifetime by a factor of ∼2 due to the increasingly unconfined LH1 state, which agreed very well with the design. It also showed a very long lifetime of several hundred picoseconds for the holes excited out of the well to transit back to the well through a diagonal process.  相似文献   

17.
In this study, a detailed investigation of the size effects of an exciton–acceptor complex in a disc-like quantum dot has been carried out by using the matrix diagonalization method and the compact density-matrix approach. We calculate the binding energy and the oscillator strength of intersubband quantum transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index have been examined between the ground and the first excited states. We find that the all absorption spectra and refractive index changes are strongly affected by the quantum dot size. However, for two cases of a smaller dot and a larger dot, the results of quantum size effects on the optical absorptions are opposite.  相似文献   

18.
In this study, the changes in the refractive index and intersubband optical absorption coefficients in symmetric double semi-V-shaped quantum wells are investigated theoretically. The energy levels and the envelope wave functions of an electron confined in finite potential double semi-V-shaped quantum wells are calculated within the effective-mass approximation framework. The analytical expressions of the refractive index and intersubband optical absorption coefficients are obtained using the compact density matrix approach. The effects of the incident optical intensity and structure parameters, such as the barrier width, confinement potential and the well width, on the optical properties of the double semi-V-shaped quantum wells are investigated. The numerical results show that both the incident optical intensity and structure paremeters have a great effect on the optical characteristics of these structures.  相似文献   

19.
李群  屈媛  班士良 《物理学报》2017,66(7):77301-077301
由于ZnO缓冲层对纤锌矿ZnO/Mg_xZn_(1-x)O有限深单量子阱结构左垒的限制作用,导致阱和右垒的尺寸、Mg组分值等因素将影响系统中形成二能级.本文考虑内建电场、导带弯曲及材料掺杂对实际异质结势的影响,利用有限差分法数值求解Schr?dinger方程,获得电子的本征能级和波函数,探讨ZnO缓冲层对此类量子阱形成二能级系统的尺寸效应及三元混晶效应的影响;利用费米黄金法则探讨缓冲层、左垒、阱及右垒宽度和三元混晶效应对此类量子阱电子子带间跃迁光吸收的影响.计算结果显示:对于加入ZnO缓冲层的ZnO/Mg_xZn_(1-x)O有限深单量子阱二能级系统,左垒宽度临界值会随着阱宽和Mg组分值的增大而逐渐减小,随着右垒宽度和缓冲层厚度的增大而逐渐增大;量子阱中电子子带间跃迁光吸收峰会随着左垒、右垒尺寸以及Mg组分的增大发生蓝移,随着阱宽增大而发生红移.本文所得结果可为改善异质结器件的光电性能提供理论指导.  相似文献   

20.
谷卓  班士良 《物理学报》2014,63(10):107301-107301
对于纤锌矿结构ZnO/MgxZn1-xO有限深单量子阱结构,考虑内建电场、导带弯曲及材料掺杂对实际异质结势的影响,利用有限差分法和自洽法数值求解Schr?dinger方程和Poisson方程,获得电子(空穴)的本征能级和本征波函数.进而,采用费米黄金法则讨论带间光吸收的尺寸效应和三元混晶效应.结果表明:三元混晶材料MgxZn1-xO中Mg组分的增加会增强垒层和阱层的内建电场强度,使得电子(空穴)平均位置靠近左(右)垒,导致带间跃迁吸收峰呈指数减小且发生蓝移;ZnO/MgxZn1-xO量子阱带间跃迁吸收峰随阱宽增大而减小,吸收峰发生红移.所得结果可为改善异质结构材料和器件的光电性能提供理论指导,以期获得实际应用所需的光学吸收频谱和波长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号