首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rare-earth-doped crystals contain inhomogeneously broadened two-level atoms. Optical propagation and nonlinear interaction in the crystals can be described by the Maxwell–Bloch equations. We show a consistent numerical approach that solves Maxwell’s equations by using the FFT-finite difference beam propagation method and the Bloch equations by using the finite difference method. Numerical simulation results are given for an off-axis 3-pulse photon echo.  相似文献   

2.
《Physics letters. A》1999,259(6):431-436
We consider the coupled Einstein–Dirac–Maxwell equations for a static, spherically symmetric system of two fermions in a singlet spinor state. Soliton-like solutions are constructed numerically. The stability and the properties of the ground state solutions are discussed for different values of the electromagnetic coupling constant. We find solutions even when the electromagnetic coupling is so strong that the total interaction is repulsive in the Newtonian limit. Our solutions are regular and well-behaved; this shows that the combined electromagnetic and gravitational self-interaction of the Dirac particles is finite.  相似文献   

3.
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by using the bifurcation method (Feng et al, Appl. Math. Comput. 189, 271 (2007); Li et al, Appl. Math. Comput. 175, 61 (2006)).  相似文献   

4.
Under investigation in this paper are the inhomogeneous nonlinear Schrödinger Maxwell–Bloch (INLS-MB) equations which model the propagation of optical waves in an inhomogeneous nonlinear light guide doped with two-level resonant atoms. Higher-order nonautonomous breather as well as rogue wave solutions in terms of the determinants for the INLS-MB equations are presented via the nn-fold variable-coefficient modified Darboux transformation. The interactions among two nonautonomous breathers are graphically discussed, including the fundamental breather, bound breather, two-breather compression and two-breather evolution, etc. Moreover, several patterns of the higher-order rogue waves are also exhibited, such as the square rogue wave, two- and three-order periodic rogue waves, periodic fission and fusion, two-order stationary rogue waves, and recurrence of the two-order rogue waves. The character of the trajectory of the two-order periodic rogue wave is analyzed. Additionally, a novel type of interaction, namely, the collision between the breather and long-lived rogue waves, is found to be elastic. Our results could be useful for controlling the nonautonomous optical breathers and rogue waves in the inhomogeneous erbium doped fiber.  相似文献   

5.
A generalized Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equation is constructed by the Darboux matrix method. As applications, the Nth-order rogue wave solutions of the coupled cubic–quintic nonlinear Schrödinger equation have been obtained. In particular, the dynamics of the general first- and second-order rogue waves are discussed and illustrated through some figures.  相似文献   

6.
This paper obtains the solitary wave as well as the shock wave solutions of the Degasperis–Procesi equation. Both regular nonlinearity as well as power law nonlinearity are considered. The constraint relations are identified in the process of obtaining the nonlinear wave solutions.  相似文献   

7.
Using the extended homogeneous balance method,the (1 1)-dimensional dispersive long-wave equations have been solved.Starting from the homogeneous balance method,we have obtained a nonlinear transformation for simplifying a dispersive long-wave equation into a linear partial differential equation.Usually,we can obtain only a type of soliton-like solution.In this paper,we have further found some new multi-soliton solutions and exact travelling solutions of the dispersive long-wave equations from the linear partial equation.  相似文献   

8.
The concept of the Phase Field is currently widely used in the Theory of Phase Transitions and Material science. The Penrose–Fife phase field model is now a well-established model in these fields. In the course of study of this model both the rigorous mathematical results and approximate solutions were obtained. However, to the best of our knowledge, no exact solutions were given in the literature. In the present paper we give exact travelling wave solutions for this system. While the functional form of the solutions is rather simple, the dependence of solutions on the parameters of the model is quite complicated. Also, an interesting link between this model and the Convective-Viscous Cahn–Hilliard equation is established.  相似文献   

9.
In this paper we analyze the Cauchy problem for the Einstein–Maxwell equation in the case of non-characteristic initial hypersurface. To find the correct notions of characteristic and Cauchy data we introduce a complex, which we call the Einstein–Maxwell complex. Then the Cauchy problem acquires correctness in terms of an associated spectral sequence. We define a Cauchy data in such way that they allow us to reconstruct a cohomologously unique formal solution.  相似文献   

10.
Nisha Goyal  R. K. Gupta 《中国物理 B》2012,21(9):90401-090401
The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein-Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions.  相似文献   

11.
The Maxwell–Liouville–von Neumann (MLN) equations are a valuable tool in nonlinear optics in general and to model quantum cascade lasers in particular. Several numerical methods to solve these equations with different accuracy and computational complexity have been proposed in related literature. We present an open-source framework for solving the MLN equations and parallel implementations of three numerical methods using OpenMP. The performance measurements demonstrate the efficiency of the parallelization.  相似文献   

12.
JIANPING SHI  JIBIN LI  SHUMIN LI 《Pramana》2013,81(5):747-762
By using dynamical system method, this paper considers the (2+1)-dimensional Davey–Stewartson-type equations. The analytical parametric representations of solitary wave solutions, periodic wave solutions as well as unbounded wave solutions are obtained under different parameter conditions. A few diagrams corresponding to certain solutions illustrate some dynamical properties of the equations.  相似文献   

13.
A Newton–Krylov method is developed for the solution of the steady compressible Navier–Stokes equations using a discontinuous Galerkin (DG) discretization on unstructured meshes. Steady-state solutions are obtained using a Newton–Krylov approach where the linear system at each iteration is solved using a restarted GMRES algorithm. Several different preconditioners are examined to achieve fast convergence of the GMRES algorithm. An element Line-Jacobi preconditioner is presented which solves a block-tridiagonal system along lines of maximum coupling in the flow. An incomplete block-LU factorization (Block-ILU(0)) is also presented as a preconditioner, where the factorization is performed using a reordering of elements based upon the lines of maximum coupling. This reordering is shown to be superior to standard reordering techniques (Nested Dissection, One-way Dissection, Quotient Minimum Degree, Reverse Cuthill–Mckee) especially for viscous test cases. The Block-ILU(0) factorization is performed in-place and an algorithm is presented for the application of the linearization which reduces both the memory and CPU time over the traditional dual matrix storage format. Additionally, a linear p-multigrid preconditioner is also considered, where Block-Jacobi, Line-Jacobi and Block-ILU(0) are used as smoothers. The linear multigrid preconditioner is shown to significantly improve convergence in term of number of iterations and CPU time compared to a single-level Block-Jacobi or Line-Jacobi preconditioner. Similarly the linear multigrid preconditioner with Block-ILU smoothing is shown to reduce the number of linear iterations to achieve convergence over a single-level Block-ILU(0) preconditioner, though no appreciable improvement in CPU time is shown.  相似文献   

14.
To model physical phenomena more accurately, fractional order differential equations have been widely used. Investigating exact solutions of the fractional differential equations have become more important because of the applications in applied mathematics, mathematical physics, and other areas. In this work, by means of the trial solution method and complete discrimination system, exact traveling wave solutions of the conformable time-fractional Zakharov–Kuznetsov equation and conformable time-fractional Zoomeron equation have been obtained and also solutions have been illustrated. Finding exact solutions of these equations that are encountered in plasma physics, nonlinear optics, fluid mechanics, and laser physics can help to understand nature of the complex phenomena.  相似文献   

15.
16.
This paper obtains the soliton solutions of the Gilson–Pickering equation. The G′/G method will be used to carry out the solutions of this equation and then the solitary wave ansatz method will be used to obtain a 1-soliton solution of this equation. Finally, the invariance and multiplier approach will be applied to recover a few of the conserved quantities of this equation.  相似文献   

17.
胡建兰 《中国物理》2005,14(3):455-459
Exact travelling wave solutions to some nonlinear equations of fifth order derivatives are derived by using some accurate ansatz methods.  相似文献   

18.
This paper deals with exact soliton solutions of the nonlinear long–short wave interaction system, utilizing two analytical methods. The system of coupled long–short wave interaction equations is investigated with the help of two analytical methods, namely, the generalized \(\tan (\phi /2)\)-expansion method and He’s semi-inverse variational method. Moreover, in this paper we generalize two aforementioned methods which give new soliton wave solutions. As a consequence, solutions are including solitons, kink, periodic and rational solutions. Moreover, dark, bright and singular solition solutions of the coupled long–short wave interaction equations have been found. All solutions have been verified back into its corresponding equation with the aid of maple package program. We depicted the physical explanation of the extracted solutions with the free choice of the different parameters by plotting some 3D and 2D illustrations. Finally, we believe that the executed methods are robust and efficient than other methods and the obtained solutions in this paper can help us to understand the soliton waves in the fields of physics and mechanics.  相似文献   

19.
In this paper, a generalized Ablowitz–Ladik system is systemically investigated via the Darboux transformation method. Soliton solutions and conservation laws are presented. Depending on the choices of parameters, the dynamic behaviors are discussed graphically.  相似文献   

20.
We investigate cylindrically symmetric vacuum solutions with both null and non-null electromagnetic fields in the framework of the Brans–Dicke theory and compare these solutions with some of the well-known solutions of general relativity for special values of the parameters of the resulting field functions. We see that, unlike general relativity where the gravitational force of an infinite and charged line mass acting on a test particle is always repulsive, it can be attractive or repulsive for Brans–Dicke theory depending on the values of the parameters as well as the radial distance from the symmetry axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号