首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.  相似文献   

2.
The surface acoustic waves (SAWs) technique is becoming an attractive tool for accurately and nondestructively characterizing the mechanical property of the brittle low dielectric constant (low-k) thin film. The theoretical equations for describing SAWs propagating on the multi-layered structure are derived in this study. The dispersion features of SAWs propagating on different structures of low-k/SiO2/Si substrate, SiO2/low-k/Si substrate, low-k/Si substrate, and low-k/Cu/Si substrate are investigated to instruct an accurate and facile fitting process for determining Young's modulus of low-k films. The dependence of dispersion relation on the film thickness, elastic modulus of low-k materials as well as frequency are provided and discussed in detail. The study shows an obvious influence of layered structure on the dispersion relation of SAWs. For a fixed structure, the dispersion curvature increases with the decrease of Young's modulus of low-k films.  相似文献   

3.
We demonstrate the manipulation of microcavity polaritons using tunable one-dimensional potentials formed by non-piezoelectric surface acoustic waves (SAWs). We compare the modulation of polaritons by piezoelectric and non-piezoelectric SAWs and show that the latter outperform the former for high acoustic powers. We directly show the formation of mini-Brillouin zones due to the lateral modulation with the periodicity of the SAW as well as the flattening of the lowest dispersion curve due to polariton confinement, showing the formation of polariton wires.  相似文献   

4.
An approach to obtaining the dispersion equation of surface acoustic waves (SAWs) on a stress-free, randomly rough surface of an anisotropic elastic medium is suggested. The problem is solved in the approximation of a weakly rough surface using Green′s function technique. The dispersion and attenuation of sagittally and shear horizontally (SH) polarized SAWs are investigated both analytically and numerically for a three-dimensionally (3D) and a two-dimensionally (2D) rough surface of an isotropic medium. The results for 2D roughness are shown to be contained in the more general expressions for the 3D case, and the connection between the results for the 3D and the 2D cases is pointed out. Dispersion relations are derived for SAWs of both polarizations propagating in an arbitrary direction along a 2D rough surface. The SAW attenuation mechanisms are investigated at various incidence angles. It is concluded that all three mechanisms (viz. scattering into bulk transverse, longitudinal, and Rayleigh surface acoustic waves) are involved for the Rayleigh and SH polarized SAWs at certain incidence angles, whereas at the other angles only some of the mechanisms are. The criterion for the existence of SH polarized SAWs on a rough surface is considered. A possible increase of the SAW phase velocity on a rough surface compared with that for a flat boundary is discussed. In the limit λ a (where a is the roughness correlation length) simple explicit expressions for the phase velocities of Rayleigh and SH polarized SAWs are derived. A comparison of the results obtained herein with those of other workers is presented.  相似文献   

5.
This paper presents theoretical investigation of higher order acoustic plate waves propagating in single crystals of lithium niobate. The dependencies of wave velocity and electromechanical coupling coefficient of antisymmetric, symmetric, and shear horizontal modes on the parameter hf (h=plate thickness, f=operating frequency) are calculated as a function of propagation direction on X-, Y-, and Z-cut lithium niobate plates. It is found that several modes can provide values of K2 that are much greater than can be obtained with surface acoustic waves (SAWs). For example, K2 as high as 0.26 and 0.38 can be obtained from SH1 and A2 modes, respectively. This compares with a maximum value of K2=0.055 for SAWs. It is further shown that there are several crystal cut and propagation directions that can allow efficient excitation and detection of a single mode with minimal interference due to other modes.  相似文献   

6.
The optimum finite element model in the system consisting of a transparent coating and an opaque substrate is established based on the analysis of two important parameters: meshing size and time step, and the stability of solution. Taking into account the temperature dependence of material properties, the transient temperature and temperature gradient field are obtained. According to the thermoelastic theory, this temperature gradient field can be taken as a buried bulk source to generate ultrasonic wave. The surface acoustic waves (SAWs) are obtained. The influence of the coating thickness on the SAWs is analyzed. The model provides a useful tool for the determination of modes which are generated by a laser source in transparent coating on opaque substrate. The surface skimming longitudinal wave exists for the multiple oscillations and it charges from unipolar waveforms to dipolar.  相似文献   

7.
基于激光超声的微裂纹检测技术的研究   总被引:9,自引:0,他引:9  
苏琨  任大海  李建  尤政 《光学技术》2002,28(6):518-519
在固体中利用激光产生超声波 ,可作为超声测量和材料无损检测的一种新方法。介绍了激光超声表面波的产生机理、微裂纹的检测方法及其应用。采用Nd∶YAG脉冲激光器、扩束与聚焦透镜组、PZT探头、数据分析仪等器件设计并构建了一套基于接触式检测方法的激光超声微裂纹检测实验系统。通过对大量实验数据进行处理 ,得出了相应的各种关系曲线 ,说明了线光源产生的超声表面波非常适用于材料表面微裂纹的检测  相似文献   

8.
The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.  相似文献   

9.
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump–probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented.  相似文献   

10.
Based on D.P. Chen and Haus' theory, a theoretical method was presented to analyze dispersion characteristics of SH-type surface acoustic waves (SAWs) propagating on periodic metallic grating structures with a variational principle and coupling-of-modes equation. Without using complicated Green's function, the calculating results of the method agree well with those of Hashimoto's theory. On the other hand, Hashimoto's method is helpless for calculating the dispersion relation of short-circuited gratings on ST-90°X quartz etc. However, the method developed in this paper can successfully calculate it.  相似文献   

11.
Interference measurements of small variations in the velocity and attenuation of surface acoustic waves (SAWs) are used to investigate water layers up to 15 nm thick adsorbed on the surface of a lithium niobate crystal. The frequency dependence of the relative variation of the SAW velocity with the adsorption of water vapor is measured in the range from 40 to 400 MHz. Acoustic techniques are used to experimentally estimate the frequency dependence of the dielectric constant of adsorbed water and its dipole relaxation frequency along with the dependence of the adsorption layer thickness on the water vapor pressure in the surrounding medium. A simple expression is proposed for calculating the dispersion of the SAW velocity in a solid loaded with a thin liquid layer.  相似文献   

12.
Wenjun Yang 《哲学杂志》2013,93(33):3186-3209
Abstract

In this paper, the flexoelectric effect on Love waves propagating in a structure with a nanoscale piezoelectric guiding layer deposited on an isotropic elastic substrate is analytically investigated. Transcendental complex dispersion equations are obtained and solved numerically which are corresponding to the electrically open and short conditions at the free surface. A detailed discussion about the dispersion relations of the fundamental mode is subsequently presented. The results indicate that flexoelectricity has a substantial effect on Love wave propagation. The presence of flexoelectricity leads to a complex phase velocity with a negative/positive imaginary part, which means Love waves attenuate/grow over time. In addition, the phase velocity dispersion relations depend greatly on the thickness and flexoelectric coefficients of the guiding layer. The current work is the first attempt to explore the flexoelectric effect on the propagation characteristics of surface acoustic waves (SAWs). And the results would be beneficial to achieve a better performance of SAW devices.  相似文献   

13.
王艳  谢英才  张淑仪  兰晓东 《中国物理 B》2017,26(8):87703-087703
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k~2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k~2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k~2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.  相似文献   

14.
Magneto-optic Kerr microscopy was employed to investigate the spin-orbit interactions of electrons traveling in semiconductor quantum wells using surface acoustic waves (SAWs). Two-dimensional images of the spin flow induced by SAWs exhibit anisotropic spin precession behaviors caused by the coexistence of different types of spin-orbit interactions. The dependence of spin-orbit effective magnetic fields on SAW intensity indicates the existence of acoustically controllable spin-orbit interactions resulting from the strain and Rashba contributions induced by the SAWs.  相似文献   

15.
4 O7 crystal is a new nonlinear optical crystal. For the first time the anisotropy of the velocities of its longitudinal and surface acoustic waves (SAWs) are determined by laser ultrasonic technique. The velocities of surface waves for X-, Y-, and Z-cut crystals are also calculated. The theoretical calculations of slowness curves are in good agreement with experimental results. The SAW slowness curve is elliptical for Y- or Z-cut crystal wafers, and circular for an X-cut wafer. Received: 27 January 1997/Accepted: 30 July 1997  相似文献   

16.
Numerical analysis of the first-and second-order temperature coefficients of the delay of surface acoustic waves (SAWs) in LGS and LGN crystals was carried out. The calculations were performed along thermostable directions in a wide temperature range. The effect of an aluminium layer having a finite thickness on the SAW temperature characteristics is shown.  相似文献   

17.
Hong Y  Sharples SD  Clark M  Somekh MG 《Ultrasonics》2004,42(1-9):515-518
A method has been developed to measure the phase velocity of laser generated and detected surface acoustic waves. An optical grating produced by an electronically addressable spatial light modulator (SLM) was imaged onto the sample surface to generate surface acoustic waves whose frequency and wavefront was controlled by the SLM. When the grating period matched the surface acoustic wavelength, the surface wave was strongly excited, thus the wavelength and, thereby the phase velocity was determined. We present results with this method that allows the phase velocity and the angular dispersion of the generalized surface wave as well as the pseudo-surface wave on the (100) nickel to be measured. Measurements on (111) silicon single crystals are also presented. The measurement precision is approximately 0.2%. Methods to further improve the measurement precision are also discussed.  相似文献   

18.
A new kind of non-contact linear actuator (motor) driven by surface acoustic waves (SAWs) is presented, in which the stators are made from SAW delay lines using 128° YX-LiNbO3 substrates. A fluid layer is introduced between the slider and the stator of the actuator, and the slider is a circular aluminum disk suspended on the surface of the liquid (water) layer. As the SAW is excited on the stator, the SAW is converted to a leaky wave in the interface of the stator and the liquid, and then propagates into the liquid. Owing to the nonlinear effect of wave propagation, acoustic streaming is generated, which pushes the slider to move. By the experiments, the relations between the slider velocity and the experimental parameters, such as the exciting voltage of the SAWs, the thickness and the kinematic viscosity of the liquid layer, are obtained.  相似文献   

19.
We present measurements of the reflection and mode conversion of surface acoustic waves (SAWs) by scanning acoustic force microscopy (SAFM). The SAFM offers a unique combination of high lateral resolution and high sensitivity towards acoustic modes of all polarizations. Since a SAW mixing experiment of two waves can be performed even if the amplitude difference between both waves is 40 dB, wavefields of extremely small amplitudes can be investigated. Using SAFM, the reflection of SAWs from a metallic wedge is investigated with submicron lateral resolution. We are able to identify two reflected wave modes, a Love and a non-coupling Rayleigh mode, by measuring their phase velocities. Received: 4 December 2000 / Accepted: 6 December 2000 / Published online: 9 February 2001  相似文献   

20.
Laser ultrasonics is an effective means of generating surface acoustic waves (SAWs). We have shown in previous publications how computer-generated holograms (CGHs) can be used to project optical distributions onto the sample surface. These can be used to control both the frequency content and the spatial distribution of the resulting ultrasound field. In this paper the concept is extended further to produce distributions which themselves act as diffractive acoustic elements (DAEs) for SAWs. It is demonstrated how frequency suppression, multiple foci, and frequency selective focusing of Rayleigh waves may be achieved with these elements. Agreement between the distributions predicted from the designs and those actually measured is excellent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号