首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
胡雪兰  赵若汐  罗阳  宋庆功 《中国物理 B》2017,26(2):23101-023101
First-principles calculations based on the density functional theory(DFT) and ultra-soft pseudopotential are employed to study the atomic configuration and charge density of impurity P in Ni Al Σ5 grain boundary(GB). The negative segregation energy of a P atom proves that a P atom can easily segregate in the Ni Al GB. The atomic configuration and formation energy of the P atom in the Ni Al GB demonstrate that the P atom tends to occupy an interstitial site or substitute a Al atom depending on the Ni/Al atoms ratio. The P atom is preferable to staying in the Ni-rich environment in the Ni Al GB forming P–Ni bonds. Both of the charge density and the deformation charge imply that a P atom is more likely to bond with Ni atoms rather than with Al atoms. The density of states further exhibits the interactions between P atom and Ni atom, and the orbital electrons of P, Ni and Al atoms all contribute to P–Ni bonds in the Ni Al GB. It is worth noting that the P–Ni covalent bonds might embrittle the Ni Al GB and weakens the plasticity of the Ni Al intermetallics.  相似文献   

2.
Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material,and it has advantages in certain aspects compared with Ti2AlC,Ti3AlC2,and Ti3SiC2 structural materials.In this paper,quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural,mechanical,electronic properties,and Debye temperature.Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure(0–110 GPa).At zero pressure,quaternary carbide Ti3NiAl2C ceramics only has three bonds:Ti–Al,Ni–Al,and Ti–C.However,at pressures of 20 GPa,30 GPa,40 GPa,60 GPa,and 70 GPa,new Ti–Ni,Ti–Ti,Al–Al,Ti–Al,and Ti–Ti bonds form.When the pressure reaches 20 GPa,the covalent bonds change to metallic bonds.The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72%of its original volume at most.Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics.At 50–60 GPa,its mechanical strength can be comparable to pure tungsten,and the material changes from brittleness to ductility.However,the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure.In addition,we also investigated the Debye temperature,density,melting point,hardness,and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.  相似文献   

3.
陈丽群  彭小方  于涛 《中国物理 B》2012,21(8):87102-087102
Using DMol and the discrete variational method within the framework of the density functional theory,we study the alloying effects of Nb,Ti,and V in the [100](010) edge dislocation core of NiAl.We find that when Nb(Ti,V) is substituted for Al in the center-Al,the binding energy of the system reduces 3.00 eV(2.98 eV,2.66 eV).When Nb(Ti,V) is substituted for Ni in the center-Ni,the binding energy of the system reduces only 0.47 eV(0.16 eV,0.09 eV).This shows that Nb(Ti,V) exhibits a strong Al site preference,which agrees with the experimental and other theoretical results.The analyses of the charge distribution,the interatomic energy and the partial density of states show that some charge accumulations appear between the impurity atom and Ni atoms,and the strong bonding states are formed between impurity atom and neighbouring host atoms due mainly to the hybridization of 4d5s(3d4s) orbitals of impurity atoms and 3d4s4p orbitals of host Ni atoms.The impurity induces a strong pinning effect on the [100](010) edge dislocation motion in NiAl,which is related to the mechanical properties of the NiAl alloy.  相似文献   

4.
For B2 NiAl and NiTi intermetallic compounds, the ideal stress–strain image is lack from the perspective of elastic constants. We use first-principles calculation to investigate the ideal strength and elastic behavior under the tensile and shear loads. The relation between the ideal strength and elastic constants is found. The uniaxial tension of NiAl and NiTi along <001> crystal direction leads to the change from tetragonal path to orthogonal path, which is driven by the vanishing of the shear constant C(66). The shear failure under {110}{111} shear deformation occurring in process of tension may result in a small ideal tensile strength(~ 2 GPa) for NiTi. The unlikeness in the ideal strength of Ni Al and Ni Ti alloys is discussed based on the charge density difference.  相似文献   

5.
We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The firstprinciples computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.  相似文献   

6.
陈征征  王崇愚 《中国物理》2006,15(3):604-609
The effect of Re segregation on the α-Fe ∑5 [001] (010) grain boundary (GB) is investigated by using a software called DMol and discrete variational method (DVM). Based on the Rice Wang model, the calculated segregation energy and defect formation energy show that Re is a strong cohesive enhancer. We also calculated the interatomic energy (IE) and bond order (BO) of several atomic pairs to investigate the mechanism of the cohesive effect of Re microscopically and locally. The results show that IEs of atomic pairs formed by those atoms which cross the plane of GB are strengthened due to the segregation of Re, while the BOs of the corresponding pairs are slightly decreased. This discrepancy demonstrates that IE which contains the Hamiltoniaa of interaction between atoms is a good quantity to describe the bonding strength. The analysis suggests that the electronic effect between atomic pair which comes directly from Hamiltonian is the key factor, The charge density is also presented, and the result indicates that the bonding strength between the Fe atoms on the GB is enhanced due to the segregation of Re, which is consistent with the analysis of IE.  相似文献   

7.
Stability and diffusion of chromium (Cr) in vanadium (V), the interaction of Cr with vacancies, and the ideal me- chanical properties of V are investigated by first-principles calculations. A single Cr atom is energetically favored in the substitution site. Vacancy plays a key role in the trapping of Cr in V. A very strong binding exists between a single Cr atom and the vacancy with a binding energy of 5.03 eV. The first-principles computational tensile test (FPCTT) shows that the ideal tensile strength is 19.1 GPa at the strain of 18% along the [100] direction for the ideal V single crystal, while it decreases to 16.4 GPa at a strain of 12% when one impurity Cr atom is introduced in a 128-atom V supercell. For shear deformation along the most preferable { 110} (111) slip system in V, we found that one substitutional Cr atom can decrease the cleavage energy (7cl) and simultaneously increase the unstable stacking fault energy (]'us) in comparison with the ideal V case. The reduced ratio of ]'cl/]'us in comparison with pure V suggests that the presence of Cr can decrease the ductility of V.  相似文献   

8.
Impurity segregation at grain boundary(GB) can significantly affect the mechanical behaviors of polycrystalline metal. The effect of nickel impurity segregated at Cu GB on the deformation mechanism relating to loading direction is comprehensively studied by atomic simulation. The atomic structures and shear responses of Cu Σ9(114) 110 and Σ9(221) 110 symmetrical tilt grain boundary with different quantities of nickel segregation are analyzed. The results show that multiple accommodative evolutions involving GB gliding, GB shear-coupling migration, and dislocation gliding can be at play, where for the 2ˉ21ˉ shear of Σ9(114) 110 the segregated GBs tend to maintain their initial configurations and a segregated GB with a higher impurity concentration is more inclined to be a dislocation emission source while maintaining the high mechanical strength undergone plastic deformation for the 11ˉ4ˉ shear of Σ9(221) 110. It is found that the nickel segregated GB exerts a cohesion enhancement effect on Cu under deformation: strong nickel segregation increases the work of separation of GB, which is proved by the first-principles calculations.  相似文献   

9.
The effect of Re on stacking fault(SF) nucleation under shear strain in Ni is investigated using the climbing image nudged elastic band method with a Ni–Al–Re embedded-atom-method potential. A parameter(?Eb sf), the activation energy of SF nucleation under shear strain, is introduced to evaluate the effect of Re on SF nucleation under shear strain. Calculation results show that ?Eb sfdecreases with Re addition, which means that SF nucleation under shear strain in Ni may be enhanced by Re. The atomic structure observation shows that the decrease of ?Eb sfmay be due to the expansion of local structure around the Re atom when SF goes through the Re atom.  相似文献   

10.
肖绪洋 《中国物理 B》2010,19(11):114203-114203
This paper studies the melting of icosahedral Ag-Pd bimetallic clusters by using molecular dynamics with the embedded atom method.It finds that the mixed Ag-Pd cluster shows an irregular phenomenon before melting,i.e.,the atomic energy decreases with the increase of temperature.It indicates that the segregation of Ag atoms results in this phenomenon by analysing atomic radius distribution.Since the surface energy of Ag is lower than that of Pd,this leads to the result that the decreased energy by the Ag atomic segregation is larger than the increased energy by the heating.This provides a new method to obtain irregular thermodynamic properties.  相似文献   

11.
A phase field microelasticity simulation is performed to examine the antisite defect of L12-Ni3Al in Ni75Al5.3 V19.7 ternary alloy. Combinimg strain energy with the phase field model leads to an atom configuration change as time proceeds. For the Ni sublattice, the antisite defect AlNi, the equilibrium occupancy probability (OP) of which declines, precedes NiNi and VNi in reaching equilibrium; subsequently, NiNi and VNi present a phenomenon of symmetrical rise and decline individually. Similarly, for the Al sublattice, the antisite defect NiAl, the OP of which eventually rises, takes fewer time steps than AlAl and VAl to attain equilibrium. Thereafter, AlAl rises while VAl declines symmetrically at the axes of the NiAl curve. Furthermore, the OP for the Al sublattice is much more sensitive to strain energy than that for the Ni sublattice.  相似文献   

12.
With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energy levels are calculated exactly and the impurity binding energies are calculated with the variational approach. It is found that the behaviors of electronic and shallow impurity states in heterostructures under an applied electric field are analogous to that of quantum wells. Our results show that with the increasing strength of electric field, the electron confinement energies increase, and the impurity binding energy increases also when the impurity is on the surface, while the impurity binding energy increases at first, to a peak value, then decreases to a value which is related to the impurity position when the impurity is away from the surface. In the absence of electric field, the result tends to the Levine‘s ground state energy (-1/4 effective Rydberg) when the impurity is on the surface, and the ground impurity binding energy tends to that in the bulk when the impurity is far away from the surface. The dependence of the impurity binding energy on the impurity position for different electric field is also discussed.  相似文献   

13.
The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation.It includes the site preferences of H impurity in single crystals Ni and Ni 3 Al,the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation.The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γˊinterface and Ni3 Al and H impurity on the glide plane can obstruct the glide of misfit dislocation,which is beneficial to improving the mechanical properties of Ni based superalloys.  相似文献   

14.
With the use of variational method to solve the effective mass equation, we have studied the electronic and shallow impurity states in semiconductor heterostructures under an applied electric field. The electron energy levels are calculated exactly and the impurity binding energies are calculated with the variational approach. It is found that the behaviors of electronic and shallow impurity states in heterostructures under an applied electric field are analogous to that of quantum wells. Our results show that with the increasing strength of electric field, the electron confinement energies increase, and the impurity binding energy increases also when the impurity is on the surface, while the impurity binding energy increases at first, to a peak value, then decreases to a value which is related to the impurity position when the impurity is away from the surface. In the absence of electric field, the result tends to the Levine's ground state energy (-1/4 effective Rydberg) when the impurity is on the surface, and the ground impurity binding energy tends to that in the bulk when the impurity is far away from the surface. The dependence of the impurity binding energy on the impurity position for different electric field is also discussed.  相似文献   

15.
The characteristics of solitons with a localized impurity in Bose-Einstein condensates (BECs) are investigated with numerical simulations of the Gross-Pitaevskii (GP) equation, the effects of the impurity on BEC solitons are discussed, and the atom population transferring ratios between the two BECs as time goes on are analyzed. It is found that population transfer depends on the impurity strength and the parameters of the system of BECs.  相似文献   

16.
Density functional theory (DFT) with local density approximation (LDA) is employed to study the structural and electronic properties of the high explosive octahydro- 1,3,5, 7-tetranitro-1,3, 5, 7-tetrazocine (HMX) under high pressure compression up to 40 GPa. Pressure dependences of the cell volume, lattice constants, and molecular geometry of solid β-HMX are presented and discussed. It is found that N-N and N-C bonds are subject to significant change. This may implies that these bonds may be related to the sensitivity. The band gap is calculated and plotted as a function of pressure. Compared the experimental results with other theoretical works we find that LDA gives good results.  相似文献   

17.
张敏  班士良 《中国物理 B》2009,18(10):4449-4455
A variational method is adopted to investigate the properties of shallow impurity states near the interface in a free strained wurtzite GaN/AlxGa1-xN heterojunction under hydrostatic pressure and external electric field by using a simplified coherent potential approximation. Considering the biaxial strain due to lattice mismatch or epitaxial growth and the uniaxial strains effects, we investigated the Stark energy shift led by an external electric field for impurity states as functions of pressure as well as the impurity position, Al component and areal electron density. The numerical result shows that the binding energy near linearly increases with pressure from 0 to 10 GPa. It is also found that the binding energy as a function of the electric field perpendicular to the interface shows an un-linear red shift or a blue shift for different impurity positions. The effect of increasing x on blue shift is more significant than that on the red shift for the impurity in the channel near the interface. The pressure influence on the Stark shift is more obvious with increase of electric field and the distance between an impurity and the interface. The increase of pressure decreases the blue shift but increases the red shift.  相似文献   

18.
Based on density functional theory, first-principles calculation is applied to study the electronic properties of undoped and Ag-doped Zn O-Σ7(12ˉ30) twin grain boundaries(GBs). The calculated result indicates that the twin GBs can facilitate the formation and aggregation of Ag substitution at Zn sites(AgZn) due to the strain release. Meanwhile, some twin GBs can also lower the ionization energy of AgZn. The density of state shows that the O–O bonds in GBs play a key role in the formation of a shallow acceptor energy level. When AgZnbonds with one O atom in the O–O bond, the antibonding state of the O–O bond becomes partially occupied. As a result, a weak spin splitting occurs in the antibonding state, which causes a shallow empty energy level above the valence band maximum. Further, the model can be applied to explain the origin of p-type conductivity in Ag-doped Zn O.  相似文献   

19.
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.  相似文献   

20.
王志远  吴裕功  佟帅  吴斯骐 《中国物理 B》2012,21(6):66501-066501
A theoretical model is established to investigate the intragranular particle residual stress in Al2O3-SiC nanocomposites.Using this model,we calculate the average compressive stress on the Al2O3 grain boundary(GB) and the average tensile stress within Al2O3 grains caused by SiC nanoparticles.The normal compressive stress strengthens the GB,and the average tensile stress weakens the grains.The model gives a reasonable interpretation of the strength changes of Al2O3-SiC nanocomposites with the number of SiC particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号