共查询到20条相似文献,搜索用时 0 毫秒
1.
Xun BieJianguo Lu Yuping WangLi Gong Quanbao MaZhizhen Ye 《Applied Surface Science》2011,257(14):6125-6128
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. Taguchi method was used to find the optimal deposition parameters including oxygen partial pressure, argon partial pressure, substrate temperature, and sputtering power. By employing the analysis of variance, we found that the oxygen and argon partial pressures were the most influencing parameters on the electrical properties of ZnO:Ga films. Under the optimized deposition conditions, the ZnO:Ga films showed acceptable crystal quality, lowest electrical resistivity of 2.61 × 10−4 Ω cm, and high transmittance of 90% in the visible region. 相似文献
2.
Al-doped ZnO (AZO, ZnO:Al2O3 = 98:2 wt%) films are deposited on different substrates by an RF magnetron sputtering and subsequently annealed at three different conditions to investigate the microstructural, electrical, and optical properties. X-ray diffraction and scanning electron microscope results show that all the samples are polycrystalline and the samples rapid-thermal-annealed at 900 °C in an N2 ambient contain larger grains compared to the furnace-annealed samples. It is shown that the sample deposited at room temperature on the sapphire gives a resistivity of 5.57 × 10−4 Ω cm when furnace-annealed at 500 °C in a mixture of N2:H2 (9:1). It is also shown that the Hall mobility vs. carrier concentration (μ-n) relation is divided into two groups, depending on the annealing conditions, namely, either rapid-thermal annealing or furnace annealing. The relations are described in terms of either grain boundary scattering or ionized impurity scattering mechanism. In addition, the samples produce fairly high transmittance of 91-96.99% across the wavelength region of 400-1100 nm. The optical bandgaps of the samples increase with increasing carrier concentration. 相似文献
3.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The structural, electrical, and optical properties of ZnO:Ga films were investigated in a wide temperature range from room temperature up to 400 °C. The crystallinity and surface morphology of the films are strongly dependent on the growth temperatures, which in turn exert an influence on the electrical and optical properties of the ZnO:Ga films. The film deposited at 350 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.4 × 10−4 Ω cm. More importantly, the low-resistance and high-transmittance ZnO:Ga films were also obtained at a low temperature of 150 °C by changing the sputtering powers, having acceptable properties for application as transparent conductive electrodes in LCDs and solar cells. 相似文献
4.
Al-doped ZnO (AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering with a ceramic ZnO:Al2O3 (98 wt%:2 wt%) target. The origin of the high resistivity of the films at the substrate position facing the erosion area of the target was investigated. The results indicate a preferential resputtering of Zn atoms caused by the negative ions, which leads to an increase of the oxygen/metal ratio in the films. Then more Al oxides form and result in the decrease of AlZn (the main donor in the films) concentration in the films. Thus the free carrier concentration decreases badly. This is the main mechanism responsible for the high resistivity. 相似文献
5.
Beom-Ki ShinTae-Il Lee Ji-Hyeon ParkKang-Il Park Kyung-Jun AhnSung-Kee Park Woong LeeJae-Min Myoung 《Applied Surface Science》2011,258(2):834-838
Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs. 相似文献
6.
Transparent aluminum-doped zinc oxide (AZO) thin films were deposited on quartz glass substrates by pulsed laser deposition (PLD) from ablating Zn-Al metallic targets. The structural, electrical and optical properties of these films were characterized as a function of Al concentration (0-8 wt.%) in the target. Films were deposited at a low substrate temperature of 150 °C under 11 Pa of oxygen pressure. It was observed that 2 wt.% of Al in the target (or 1.37 wt.% of Al doped in the AZO film) is the optimum concentration to achieve the minimum film resistivity and strong ultraviolet emission. The presence of Al in the ZnO film changes the carrier concentration and the intrinsic defects. 相似文献
7.
The effects of O2 plasma pretreatment on the properties of Ga-doped ZnO films on PET substrate were studied. Ga-doped ZnO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion of PET substrate, O2 plasma pretreatment process was used prior to GZO sputtering. With increasing O2 plasma treatment time, the contact angle decreases and the RMS surface roughness increases significantly. The transmittance of GZO films on PET substrate in a wavelength of 550 nm was 70-84%. With appropriate O2 plasma treatment, the resistivity of GZO films on PET substrate was 3.4 × 10−3 Ω cm. 相似文献
8.
Correlation between electrical and optical properties of Cr:ZnO thin films grown by pulsed laser deposition 总被引:1,自引:0,他引:1
R.S. Ajimsha A.K. DasB.N. Singh P. MisraL.M. Kukreja 《Physica B: Condensed Matter》2011,406(24):4578-4583
Highly transparent and conducting Chromium doped ZnO (Cr:ZnO) thin films with preferential c-axis orientation were grown on (0 0 0 1) sapphire substrates using buffer assisted pulsed laser deposition. The resistivity of Cr:ZnO thin films was found to decrease to a minimum value of ∼1.13×10−3Ω cm with the increasing Cr concentration up to ∼1.9 at.% and then increase with further increase of Cr concentration. On the contrary, the band gap and carrier concentration of Cr:ZnO thin films increased up to ∼3.37 eV and ∼2×1020 cm−3, respectively, with the increase of Cr concentration up to ∼1.9 at.%, then decreased with further increase of Cr concentration. The increase of carrier concentration and conductivity with Cr doping at low Cr concentrations (<1.9 at.%) could be attributed to the presence of Cr in +3 valence state in ZnO thus acting as donor while decrease of carrier concentration beyond ∼1.9 at.% of Cr concentration could be attributed to the charge compensating effect due to the presence of acceptor like point defects such as oxygen interstitials. This was experimentally confirmed using x-ray photoelectron spectroscopy. The observed variation in the band gap of Cr:ZnO thin films with increasing Cr doping was attributed to the competing effects of the high free carrier concentration induced Burstein-Moss blue shift and band gap narrowing. 相似文献
9.
Kang Hyon Ri Yunbo Wang Wen Li ZhouJun Xiong Gao Xiao Jing WangJun Yu 《Applied Surface Science》2011,258(4):1283-1289
In this study, the structural and electrical properties of AZO films with different film thickness deposited by r.f. magnetron sputtering were interpreted in relation with film growth process. The result shows that the grain size increases during film growth, which is accompanied by decrease of compressive stress, indicating the enhancement of crystallinity. The relationship between grain size and compressive stress follows the same tendency for the samples regardless of deposition temperature, which implies the strong dependencies between the grain size and the compressive stress. The XPS analysis shows that the defects such as chemisorbed oxygen and segregated Al2O3 cluster at grain boundary are reduced with increase of film thickness or deposition temperature, leading to increase of carrier concentration and mobility. The mobility increase is accompanied by grain size increase and compressive stress reduction, indicating the influences of grain boundary and crystallinity on the mobility. 相似文献
10.
11.
《Current Applied Physics》2014,14(6):850-855
Transparent and conductive thin films of fluorine doped zinc tin oxide (FZTO) were deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. The effect of annealing temperature on the structural, electrical and optical performances of FZTO thin films has been studied. FZTO thin film annealed at 600 °C shows the decrease in resistivity 5.47 × 10−3 Ω cm, carrier concentration ∼1019 cm−3, mobility ∼20 cm2 V−1 s−1 and an increase in optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures which is well explained by Burstein–Moss effect. The optical transmittance of FZTO films was higher than 80% in all specimens. Work function (ϕ) of the FZTO films increase from 3.80 eV to 4.10 eV through annealing and are largely dependent on the amounts of incorporated F. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics. 相似文献
12.
Do-Hyun Kim Geumchae Kim Ved Prakash Verma Minhyon Jeon 《Optics Communications》2008,281(8):2120-2125
The optical properties of undoped zinc oxide (ZnO) thin films of various thicknesses were compared with those of Ga-doped (GZO) thin films. Transparent, high-quality undoped ZnO and GZO films were deposited successfully using radio-frequency (RF) sputtering at room temperature. The films were polycrystalline with a hexagonal structure and a strongly preferred orientation along the c-axis. The films had an average optical transmission >85% in the visible part of the electromagnetic spectrum. The undoped ZnO thin films were more transparent than the GZO thin films. In the photoluminescence (PL) spectrum, ZnO film has higher quality than GZO as a result of decrease in the green emission intensity. 相似文献
13.
《Current Applied Physics》2015,15(9):1010-1014
A polycrystalline MgZnO/ZnO bi-layer was deposited by using a RF co-magnetron sputtering method and the MgZnO/ZnO bi-layer TFTs were fabricated on the thermally oxidized silicon substrate. The performances with varying the thickness of ZnO layer were investigated. In this result, the MgZnO/ZnO bi-layer TFTs which the content of Mg is about 2.5 at % have shown the enhancement characteristics of high mobility (6.77–7.56 cm2 V−1 s−1) and low sub-threshold swing (0.57–0.69 V decade−1) compare of the ZnO single layer TFT (μFE = 5.38 cm2 V−1 s−1; S.S. = 0.86 V decade−1). Moreover, in the results of the positive bias stress, the ΔVon shift (4.8 V) of MgZnO/ZnO bi-layer is the 2 V lower than ZnO single layer TFT (ΔVon = 6.1 V). It reveals that the stability of the MgZnO/ZnO bi-layer TFT enhanced compared to that of the ZnO single layer TFT. 相似文献
14.
Optical and electrical characteristics of Al-doped ZnO thin films prepared by aqueous phase deposition 总被引:1,自引:0,他引:1
Transparent conducting Al-doped ZnO (AZO) thin films have been deposited by sol-gel route. Starting from an aqueous solution of zinc acetate by adding aluminum chloride as dopant, a c-axis oriented polycrystalline ZnO thin film 100 nm in thickness could be spin-coated on glass substrates via a two-step annealing process under reducing atmosphere. The effects of thermal annealing and dopant concentration on the structural, electrical and optical properties of AZO thin films were investigated. The post-treated AZO films exhibited a homogenous dense microstructure with grain sizes less than 10 nm as characterized by SEM photographs. The annealing atmosphere has prominent impact on the crystallinity of the films which will in turn influence the electrical conductivity. By varying the doping concentrations, the optical and electrical properties could be further adjusted. An optimal doping concentration of Al/Zn = 2.25 at.% was obtained with minimum resistivity of 9.90 × 10−3 Ω-cm whereas the carrier concentration and mobility was 1.25 × 1020 cm−3 and 5.04 cm2 V−1 s−1, respectively. In this case, the optical transmittance in the visible region is over 90%. 相似文献
15.
Thermal conductivities (TCs) of ZnO thin films of thickness 80-276 nm prepared by sol-gel method are measured by the transient thermoreflectance (TTR) system. The obtained TCs ranging from 1.4 to 6.5 W/m K decrease while the thickness decrease. The measured TCs are much smaller than those of bulk ZnO, which is about 100 W/m K. The possible reasons for the decrease are the grain boundary and defects. The latter is the dominating one from the analysis. 相似文献
16.
CHEN Yanwei YU Wenhua & LIU Yichun . Centre for Advanced Optoelectronic Functional Material Research Northeast Normal University Changchun China . Key Laboratory of Excited State Processes Changchun Institute of Optics Fine Mechanics Physics Chinese Academy of Sciences Changchun China 《中国科学G辑(英文版)》2004,47(5):588-596
Transparent conducting oxide (TCO) thin films such as SnO2, In2O3, and Cd2SnO4, have been used extensively as sensor devices, surface acoustic wave devices, coating to heat glass windows and transparent electrodes for solid state display devices, solar cells[1,2] because of their high optical transparency in the visible range, infrared reflec-tance and low d.c. resistivity. Although SnO2 film was developed early, nowadays Sn-doped In2O3 (ITO) films are the predominant TCO thin film in … 相似文献
17.
ZnO and indium-doped ZnO (IxZO) thin films were prepared on silica-glass substrates by the sol-gel method. The thin films were crystallized at 600 °C and 700 °C for 1 h in 6.9 × 10−1 Torr under pure O2 atmosphere. The analyzed results were compared to investigate the structural characteristics and optical properties. The surface morphology of the IxZO films was different from that of the ZnO films, and showed a thin overlay structure. In addition, the crystallization of IxZO film was depleted at higher crystallized temperatures. From XRD analysis, the ZnO and IxZO thin films possessed hexagonal structures. Notably, micro-In2O3 phases were observed in the IxZO thin films using EDS. Both of In2O3 phases and the crystallization mechanism not only improved the peeling of structure, but also improved the electrical conductivity of IxZO thin films. For the PL spectrum, the optical property of the IxZO film was raised at a higher crystallization temperature. Although the In2O3 phases reduced the structural defects of IxZO thin film, the optical effect of the residual In3+ was not enhanced completely at higher crystallized temperatures. 相似文献
18.
Gallium-doped zinc oxide films have been grown on glass substrates with and without ZnO buffer layers by r.f. magnetron sputtering at room temperature. In this approach, the grey relational Taguchi method analysis is adopted to solve the coating process with multiple deposition qualities. Optimal coating parameters can then be determined by using the gray relational grade as a performance index. The GZO coating parameters (r.f. power, sputtering pressure, O2/(Ar+O2) flow-rate ratios, and deposition time) are optimized, by taking into account the multiple performance characteristics (structural, morphological, deposition rate, electrical resistivity, and optical transmittance). The results indicate that with the grey relational Taguchi method, the electrical resistivity of GZO films is reduced from 9.23×10−3 to 5.77×10−3 Ω cm and optical transmittance increases from 79.42% to 82.95%, respectively. The ZnO buffer layer can reduce the electrical resistivity of GZO films from 5.77×10−3 to 2.38×10−3 Ω cm. It can be anticipated that room temperature deposition enables film deposition onto polymeric substrates for flexible optoelectronic devices. 相似文献
19.
In this study, the ZnO/Ag-Ti structure for transparence conducting oxide (TCO) is investigated by optimizing the thickness of the Ag-Ti alloy and ZnO layers. The Ag-Ti thin film is deposited by DC magnetron sputtering and its thicknesses is well controlled. The ZnO thin film is prepared by sol-gel method using zinc acetate as cation source, 2-methoxiethanol as solvent and monoethanolamine as solution stabilizer. The ZnO film deposition is performed by spin-coating technique and dried at 150 °C on Corning 1737 glass. Due to the conductivity of ZnO/Ag-Ti is dominated by Ag-Ti, the sheet resistance of ZnO/Ag-Ti decrease dramatically as the thickness of Ag-Ti layer increases. However, the transmittances of ZnO/Ag-Ti become unacceptable for TCO application after the thickness of Ag-Ti layer beyond 6 nm. The as-deposited ZnO/Ag-Ti structure has the optical transmittance of 83% @ 500 nm and the low resistivity of 1.2 × 10−5 Ω-cm. Furthermore, for improving the optical and electrical properties of ZnO/Ag-Ti, the thermal treatment using laser is adopted. Experimental results indicate that the transmittance of ZnO/Ag-Ti is improved from 83% to 89% @ 500 nm with resistivity of 1.02 × 10−5 Ω-cm after laser drilling. The optical spectrum, the resistance, and the morphology of the ZnO/Ag-Ti will be reported in the study. 相似文献
20.
O. Lupan T. Pauporté L. Chow B. Viana L.K. Ono H. Heinrich 《Applied Surface Science》2010,256(6):1895-1907
The development of cost-effective and low-temperature synthesis techniques for the growth of high-quality zinc oxide thin films is paramount for fabrication of ZnO-based optoelectronic devices, especially ultraviolet (UV)-light-emitting diodes, lasers and detectors. We demonstrate that the properties, especially UV emission, observed at room temperature, of electrodeposited ZnO thin films from chloride medium (at 70 °C) on fluor-doped tin oxide (FTO) substrates is strongly influenced by the post-growth thermal annealing treatments. X-ray diffraction (XRD) measurements show that the films have preferably grown along (0 0 2) direction. Thermal annealing in the temperature range of 150-400 °C in air has been carried out for these ZnO thin films. The as-grown films contain chlorine which is partially removed after annealing at 400 °C. Morphological changes upon annealing are discussed in the light of compositional changes observed in the ZnO crystals that constitute the film. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments due to the reducing of defects levels and of chlorine content. The transmission and absorption spectra become steeper and the optical bandgap red shifted to the single-crystal value. These findings demonstrate that electrodeposition have potential for the growth of high-quality ZnO thin films with reduced defects for device applications. 相似文献