首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sputtering of CoSi2 and NbSi2 has been carried out by Xe ion bombardment at room temperature, as well as at elevated temperatures putting these systems in their radiation-enhanced diffusion regimes. The range of the Xe ions (at 200–260 keV) was appreciably less than the thickness of the silicides. The samples were analyzed by 2 MeV He+ backscattering spectrometry, x-ray diffraction and optical microscopy. The ratio of the sputtering yield of Si to that of the metal (i.e., Co or Nb) always exceeds the stoichiometric ratio 21, leading to Si depleted surface layers. The amount of the sputtered species increases almost linearly with dose until intermixing of the silicide with the underlying Si becomes appreciable. This happens at lower doses in the radiation-enhanced diffusion regime than at room temperature. Irradiation of CoSi2 samples at high temperature leads to a broadening of the implanted Xe profile compared to the room temperature profile. No such phenomenon has been found in NbSi2. The effect of Xe broadening on the sputtering yields is discussed.  相似文献   

2.
Depth profiles of hydrogen implanted into crystalline silicon in random direction at different fluences have been measured by the15N technique and by SIMS. Whereas hydrogen implanted at a fluence of 1015 ions/cm2 shows some limited mobility, no such mobility is observed for higher implantation fluences. In these cases, ballistic computer codes describe the depth distributions well, within the ranges of both experimental and theoretical accuracy. Annealing up to 510 K does not change the hydrogen distributions.Furthermore, high-fluence hydrogen implantation into silicon dioxide has been examined. There is some indication for radiation-enhanced diffusion during the implantation process. Upon subsequent thermal annealing, the hydrogen is found to diffuse, probably via a trapping/detrapping mechanism associated with an OH/H2 transformation of the hydrogen bonding.  相似文献   

3.
We have performed a systematic SIMS study into the effect of (i) the chemical nature and (ii) the energy of the primary ions on the decay length which characterizes the exponential fall-off of impurity sputter profiles. The samples consisted of low resistivity, p-type Si covered with thin metallic overlayers. Bombardment was carried out at 2° off normal. Aspect (i) was investigated for tracers of Cu and Ga using N 2 + , O 2 + , and Ne+ primary ions at an energy of 5 keV/atom. The effect of the beam energy, aspect (ii), was studied for eight different tracer species and N 2 + primary ions at energies between 2 and 5 keV/atom. In the case of Ga, was found to be shorter with N 2 + or O 2 + primary ions (=7.0 and 7.5 nm, respectively) than with Ne+ (=12 nm). This effect is attributed to beam induced formation of Si3N4 or SiO2 layers, whereby the effective width of the internal distribution of intermixed Ga impurities in the Si subsystem is reduced significantly. In contrast to Ga, the decay length for Cu is smallest under bombardment with Ne+ (=16 nm), quite large with N 2 + (26 nm) and extremely large with O 2 + (2.2 m). Segregation of Cu atoms at the Si3N4/Si and the SiO2/Si interface, respectively, is responsible for this depressed impurity removal rate. Within experimental accuracy the observed variation of the decay length with N 2 + energy E [keV/atom] can be written in the form =kE p, where k and p are element specific parameters which range from k=1.2 nm for Pb to 10 nm for Cu and from p=0.6 for Cu and Ag to 1.0 for Pb. The results are discussed with reference to conceivable shapes of the distribution of intermixed impurity atoms.On leave from NTT Applied Electronics Laboratories, 3-9-11, Midori-cho, Musashino-shi, Tokyo 180, Japan  相似文献   

4.
The redistribution of thin metallic markers due to ion irradiation was studied by backscattering spectrometry in Al, Al2O3, Si, and SiO2. Marker species were selected for their similar masses and different chemical reactivities with the host media and included Ti, Fe, W, Pt, and Au. It was found that the marker signals are Gaussian and that the variance 2 of the marker atom distributions increases linearly with the dose of the irradiation, is insensitive to the temperature of irradiation in the range of 80–300 K, and depends linearly on the nuclear stopping power of the incident ions. The absolute values of 2 for Ti, Fe, W, Pt, and Au markers in Al and Al2O3, W, and Pt in SiO2 and W in Si is, within±50 %, of 6.5×103Å2 for 300 keV, 8×1015 Xe ions/cm2. These observations suggest that collisional cascade mixing is a dominant mechanism in this type of impurity-matrix combinations. Only Au and Pt in Si mix at a larger rate: 2 for Pt is about 3 and for Au about 5 times larger than 2 for all other markers. Lower threshold displacement energies and/or the contribution of processes other than cascade mixing are possible considered reasons. In polycrystalline Al, a rapid migration of Au and Pt atoms throughout the Al layer, similar to grain boundary diffusion, is observed.  相似文献   

5.
The electrical and optical characteristics of platinum (Pt) diffusion in n-type gallium nitride (GaN) film are investigated. The diffusion extent was characterized by the SIMS technique. The temperature-dependent diffusion coefficients of Pt in n-GaN are 4.158 × 10−14, 1.572 × 10−13 and 3.216 × 10−13 cm2/s at a temperature of 650, 750 and 850 °C, respectively. The Pt diffusion constant and activation energy in GaN are 6.627 × 10−9 cm2/s and 0.914 eV, respectively. These results indicate that the major diffusion mechanism of Pt in GaN is possibly an interstitial diffusion. In addition, it is also observed that the Pt atom may be a donor because the carrier concentration in Pt-diffused GaN is higher than that in un-diffused GaN. The optical property is studied by temperature-dependent photoluminescence (PL) measurement. The thermal quenching of the PL spectra for Pt-diffused GaN samples is also examined.  相似文献   

6.
Using molecular-dynamics simulation, we study the scattering and penetration of normally incident hyperthermal (5–400 eV) Ne, Ar, and Xe atoms off a Cu crystal. We find that between 80% and 98% of the incident energy is deposited in the solid; the fraction depends primarily on the projectile mass, and — for not too low energies — only slightly on the bombarding energy. At low energy, the major part of the non-deposited energy is carried away by the reflected projectile. At energies above the sputter threshold, an increasingly important contribution of between 2% and 6% of the incident energy is carried away by sputtered particles. These results compare well with experiment. Electronic inelastic losses show only little influence on this behaviour. We demonstrate that the inclusion of a realistic attractive interaction between the projectile and the target atoms influences the energy deposition considerably at energies below around 100 eV.  相似文献   

7.
The modified electrostatic model (Neumann and Tölle 1995) is applied to the impurity diffusion in nickel.Z 0 = 0.4 is used for the effective charge of the nickel ion.The comparison of calculated and experimental diffusion parameters reveals that the sign of J Q, the difference between impurity diffusion and self-diffusion energy, and the sign of the difference between impurity diffusion and self-diffusion coefficient is correctly predicted in all cases. On the other hand the comparison exhibits some systematic deviations for 5p impurities, which cannot be explained in terms of the current impurity diffusion models.  相似文献   

8.
The mass, angle, and energy resolved emission of neutral clusters in sputtering was studied for a variety of metals and semiconductors. The main phenomena and results are the following: (i) Cluster emission from a series of transition metals reveals a prominent contribution of clusters to the total flux of ejected particles but there is no simple scaling of cluster intensities with the average sputtering yields. With increasing number of constituents, relative intensities of neutral clusters decrease much faster than those of secondary-ion clusters. (ii) The relative intensities of clusters emitted from amorphous and crystalline semiconductors are identical, but the energy spectra of Ge n -clusters (n = 1–4) sputtered from Ge (111) peak at a slightly higher energy (1 eV) as compared to spectra taken from amorphous Ge. The intensities of all Ge n -clusters exhibit the same dependence on emission angle; this holds for both the amorphous and crystalline Ge-sample. (iii) The flux of neutral monomers, dimers, and trimers sputtered from Cu(111), Ni(111), and Ag(111) crystals shows a pronouncedly anisotropic emission along the 110 lattice directions which is ascribed to a momentum alignment in the anisotropic part of the collision cascade. Energy spectra taken along 110 peak at higher energies than those obtained from a random emission angle.  相似文献   

9.
The sputtering of oxygen-exposed molybdenum was studied by means of mass analysis of emitted neutral and charged particles. The irradiation was performed with 8 keV Ar+ ions at temperatures of 25° and 485°C. It was found that the enhanced sputtering yield at elevated temperature during oxygen exposure is due to beam-induced desorption of MoO2 and cascade sputtering of MoO. At this temperature considerable oxygen incorporation also takes place owing to recoil mixing and diffusion.EURATOM Association  相似文献   

10.
We have performed detailed resistivity measurements as a function of temperature in the range from 12 to 300 K on oxygen loaded C60 films. We observe that two ordering phase transitions (i.e.,T 0=260 K andT g =90 K) are present in (T), which, in addition, strongly depends on the oxygen content. We find a decrease of both ordering temperatures with increasing oxygen concentrations. The mechanisms of oxygen diffusion are greatly enhanced in the ordered phase on heating. Finally, the transition to a glassy state atT g is detected as a point of reversibility of the resistivity curve as a function of temperature.  相似文献   

11.
Range distributions for bismuth ions implanted in AgGaSe2 in the energy range 80–300 keV were investigated by using 2.1-MeV He2+ Rutherford backscattering spectrometry (RBS). A convolution calculation method was used to extract the true distributions of bismuth from the measured RBS spectra. The range distribution parameters, Rp and ΔRp, were obtained and compared with those obtained from Monte Carlo simulation. The experimental Rp values agree with the Monte Carlo simulation values very well, but the experimental ΔRp values are systematically larger than those from the theoretical simulation. Received: 28 January 2002 / Accepted: 11 April 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +86-531/856-5167, E-mail: xdliu@sdu.edu.cn  相似文献   

12.
To fine the reasons for the distortion of a cylindrical hollow cathode into a row of hollow spheres, the system of diffusion equations for the three most important types of particles in the hollow cathode discharge is solved, taking into consideration the essential source terms. In qualitative agreement with the experiments, the results show inhomogeneities of the cathode erosion at the cathode edges and at the boundary between hollow cathode discharge and normal glow discharge areas.  相似文献   

13.
Volume and grain boundary diffusion of 113Sn in aluminium was investigated with the radiotracer method. The implantation technique was used for tracer deposition to avoid problems of tracer hold-up caused by the oxide layer always present on aluminium. The diffusion penetration was chosen large enough to permit serial sectioning of samples with the aid of a microtome.The temperature dependence of the volume diffusivity was determined as D(T)=4.54×10–5×exp[–(114.5±1.2)kJmol–1/RT] m 2 s –1. This confirms previous measurements from our group which already showed that Sn is the fastest foreign metal diffusor so far investigated in aluminium.Grain boundary diffusion of 113Sn in Al polycrystals was measured in the type-B kinetic regime. The grain boundary diffusion product P=sD gb (s=segregation factor, =grain boundary width, D gb=grain boundary diffusivity) was found to be strongly affected by the impurity content of aluminium. For Al polycrystals of 99.9992% nominal purity we obtained P 5N(T)=1.08×10–8exp [–(96.9±7.5) kJ mol–1/RT] m3 s–1 and for less pure Al polycrystals of 99.99% nominal purity P 4N(T)=3.0×10–10 exp [–(90.1±4.2) kJ mol–1/RT] m3 s–1 was determined. The grain boundary diffusion product in the purer material is more than one order of magnitude higher than in the less pure material. Very likely this is an effect of co-segregation of non-diffusant impurities into the grain boundaries.  相似文献   

14.
The use of enriched stable isotopes combined with modern epitaxial deposition and depth profiling techniques enables the preparation of material heterostructures, highly appropriate for self- and foreign-atom diffusion experiments. Over the past decade we have performed diffusion studies with isotopically enriched elemental and compound semiconductors. In the present paper, we highlight our recent results and demonstrate that the use of isotopically enriched materials ushered in a new era in the study of diffusion in solids, which yields greater insight into the properties of native defects and their roles in diffusion. Our approach of studying atomic diffusion is not limited to semiconductors and can be applied also to other material systems. Current areas of our research concern the diffusion in the silicon-germanium alloys and glassy materials such as silicon dioxide and ion conducting silicate glasses.  相似文献   

15.
We have investigated ion-beam-enhanced diffusion of Au in undoped and B doped amorphous Si. The diffusion coefficients depend linearly on ion flux and exibit an Arrhenius-like temperature dependence with an activation energy of 0.37 eV in the temperature range 200–350° C. Moreover the diffusivity is enhanced by a factor of 5 by B-doping at a concentration of 1×1020 atoms/cm3. A similar enhancement is observed in thermal diffusion of Au which has an activation energy of 1.5 eV. On the basis of these results a model for the ion-beam-enhanced diffusion of Au is proposed where the high density of defects present in amorphous Si act as traps for the fast moving interstitial Au atoms. The effectiveness of this trapping process can be changed by the high concentration of mobile defects generated by the beam and also by a change in the charge state of the traps induced by the presence of B.  相似文献   

16.
The temperature dependence of the sputter yield and the energy spectrum of sputtered atoms have been investigated on the basis of a standard model for thermal spikes. A high-temperature and a low-temperature regime have been identified in the temperature spectrum making up the evaporation yield. The high-temperature component of the yield as well as the associated energy spectrum are only very weakly dependent on ambient target temperature. The relative variation is the less pronounced the higher the spike temperature. The low-temperature component is associated with the long-time behavior of the spike, and measurable evaporation takes place over time intervals where spikes overlap. The importance of time constants for macroscopic heat transport is pointed out. The results are shown to provide a framework within which experimental results on the temperature dependence of the sputter yield of metals can be explained. The results are also consistent with measured temperature dependences in the sputter yield of insulators.On leave from Instytut Fizyki, Uniwersytet Jagiellonski, PL-30-059 Krakow, Poland  相似文献   

17.
We emphasize the importance of the new design concept for diffusion barriers in high-density memory capacitors. RuTiN and RuTiO films are proposed as sacrificial oxygen diffusion barriers. They showed much lower sheet resistance up to 800 °C than various barriers including binary and ternary nitrides, reported by others. The contact resistance for both the Pt/RuTiN/TiSix/n++poly-plug/n+channel layer/Si and the Pt/RuTiO/RuTiN/TiSix/n++poly-plug/n+channel layer/Si contact structures, the most important electrical parameter for the diffusion barrier in the bottom-electrode structure of capacitors, exhibited values as low as 5 kΩ, even after annealing up to 750 °C. When each RuTiN and TiN film is inserted as a glue layer between the bottom electrode Pt layer in the CVD–BST simple stack-type structure, the thermal stability of the RuTiN glue layer is observed to be 150 °C higher than that of the TiN glue layer. Moreover, the capacitance of the PVD–BST simple stack-type structure with a TiN glue layer initially degrades after annealing at 500 °C, and thereafter failed completely. In the case of RuTiN and the RuTiO/RuTiN glue layers, however, the capacitance continuously increased up to 550 °C. These new experimental results accommodate the introduction of the sacrificial design concept of diffusion barriers against oxygen in high-density memory capacitors. Received: 6 February 2002 / Accepted: 4 March 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax: +82-31/360-4545, E-mail: dongsoo.yoon@hynix.com  相似文献   

18.
The temperature evolution of a copper bar during 100 keV Xe ions implantation has been experimentally recorded. The thermal behaviour of the implanted bar is quantitatively described by a simple model calculation. It is shown that the experimental results may be reproduced by considering a radiative energy dissipation from hightemperature surface regions intersected by ion impact. The quantities characterizing these thermal-spike regions like average temperature and lifetime are consistent with earlier thermodynamical estimations reported in the current literature.  相似文献   

19.
We use the transient ion drift in a depletion region of a Schottky barrier to determine ion diffusivities at moderate temperatures. The pulsed reverse bias leads to temperature dependent capacitance transients similar to deep level carrier emission transients. A simple theoretical model together with classical transient signal analysis provide the means to extract the ion diffusion constant. When applied to copper in silicon, diffusion data are obtained in a not yet investigated temperature range (280–400 K) which agree well with both low and high temperature diffusion data.  相似文献   

20.
The spatial distributions of sputtered particles have been investigated both experimentally and by computer simulation using the TRIM.SP code for 30 keV argon-ion bombardment of tungsten in a wide range of primary-ion incidence angles (0°–80°). Two sets of the targets were used. One of them was prepared from fine-grained polycrystalline ingot, another one from rolled sheet W. It was found that the experimental results for these targets were different. For rolled tungsten a typical Wehner-spot picture, although smeared, is observed. For fine-grained tungsten the sputtered particle spatial distributions are practically cupola-shaped. Some differences between the experimental results and computer-simulation data can be attributed to the effect of surface topography either initial or developed during the ion bombardment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号