首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
This paper concerns the nonfragile guaranteed cost control problem for a class of nonlinear dynamic systems with multiple time delays and controller gain perturbations. Guaranteed cost control law is designed under two classes of perturbations, namely, additive form and multiplicative form. The problem is to design a memoryless state feedback control law such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties. Based on the linear matrix inequality (LMI) approach, some delay-dependent conditions for the existence of such controller are derived. A numerical example is given to illustrate the proposed method.  相似文献   

2.
In this paper, guaranteed cost control is investigated for switched random nonlinear systems against multiple state delays, model uncertainties, intermittent sensor and actuator faults. Other factors containing nonlinear dynamics, external disturbances as well as measurement noise are also considered. This is the first try to realize guaranteed cost control for uncertain switched random nonlinear systems against multiple time delays. In practice, color noise is more common than white noise in some specific situations. Thus, this paper considers random systems with color noise. In contrast to the previous study works, the suggested system can be applied to a wider range. First, a dynamic full-order output feedback controller is established to make the system stable. And an entire closed-loop system is got to achieve guaranteed cost control. Then, the multiple delay-dependent sufficient conditions are acquired through the piecewise Lyapunov function in the framework of linear matrix inequalities (LMIs). In the meantime, controller gain matrices are obtained. At last, two simulation examples are presented to verify the availability of the suggested approach.  相似文献   

3.
The paper is devoted to the problem of constructing external estimates for the reachable set of a multidimensional control system by means of vector estimators. A system is considered that permits a decomposition into several independent subsystems with simple structure (for example, linear subsystems), which are connected to each other by means of nonlinear interconnections. For each of the subsystems, an external estimate of the reachable set is assumed to be known; this estimate is representable in the form of a level set of some function satisfying a differential inequality. An estimate for the reachable set of the combined system is constructed with the use of estimates for subsystems. The method of deriving the estimates is based on constructing comparison systems for analogs of vector Lyapunov functions (value functions).  相似文献   

4.
In this paper, a method is suggested to solve the nonlinear interval number programming problem with uncertain coefficients both in nonlinear objective function and nonlinear constraints. Based on an order relation of interval number, the uncertain objective function is transformed into two deterministic objective functions, in which the robustness of design is considered. Through a modified possibility degree, the uncertain inequality and equality constraints are changed to deterministic inequality constraints. The two objective functions are converted into a single-objective problem through the linear combination method, and the deterministic inequality constraints are treated with the penalty function method. The intergeneration projection genetic algorithm is employed to solve the finally obtained deterministic and non-constraint optimization problem. Two numerical examples are investigated to demonstrate the effectiveness of the present method.  相似文献   

5.
In this paper, we propose a new deterministic global optimization method for solving nonlinear optimal control problems in which the constraint conditions of differential equations and the performance index are expressed as polynomials of the state and control functions. The nonlinear optimal control problem is transformed into a relaxed optimal control problem with linear constraint conditions of differential equations, a linear performance index, and a matrix inequality condition with semidefinite programming relaxation. In the process of introducing the relaxed optimal control problem, we discuss the duality theory of optimal control problems, polynomial expression of the approximated value function, and sum-of-squares representation of a non-negative polynomial. By solving the relaxed optimal control problem, we can obtain the approximated global optimal solutions of the control and state functions based on the degree of relaxation. Finally, the proposed global optimization method is explained, and its efficacy is proved using an example of its application.  相似文献   

6.
This paper considers the reliable control design for T-S fuzzy systems with probabilistic actuators faults and random time-varying delays. The faults of each actuator occurs randomly and its failure rates are governed by a set of unrelated random variables satisfying certain probabilistic distribution. In terms of the probabilistic failures of each actuator and time-varying random delays, new fault model is proposed. Based on the new fuzzy model, reliable controller is designed and sufficient conditions for the exponentially mean square stability (EMSS) of T-S fuzzy systems are derived by using Lyapunov functional method and linear matrix inequality (LMI) technique. It should be noted that the obtained criteria depend on not only the size of the delay, but also the probability distribution of it. Finally, a numerical example is given to show the effectiveness of the proposed method.  相似文献   

7.
In this paper, the problem of continuous gain-scheduled fault detection (FD) is studied for a class of stochastic nonlinear systems which possesses partially known jump rates. Initially, by using gradient linearization approach, the nonlinear stochastic system is described by a series of linear jump models at some selected working points. Subsequently, observer-based residual generator is constructed for each jump linear system. Then, a new observer-design method is proposed for each re-constructed system to design H observers that minimize the influences of the disturbances, and to formulate a new performance index that increase the sensitivity to faults. Finally, continuous gain-scheduled approach is employed to design continuous FD observers on the whole nonlinear stochastic system. Simulation example is given to show the effectiveness and potential of the developed techniques.  相似文献   

8.
In this paper, the robust guaranteed cost control problem for a class of uncertain linear differential systems of neutral type with a given quadratic cost functions is investigated. The uncertainty is assumed to be norm-bounded and time-varying nonlinear. The problem is to design a state feedback control laws such that the closed-loop system is robustly stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainty and time delay. A criterion for the existence of such controllers is derived based on the matrix inequality approach combined with the Lyapunov method. A parameterized characterization of the robust guaranteed cost controllers is given in terms of the feasible solutions to the certain matrix inequalities. A numerical example is given to illustrate the proposed method.  相似文献   

9.
The general dilemma faced in a conventional linear proportional-integral (PI) controller is to achieve the best transient performance (i.e. fast rise time and low overshoot level) at the same time. However, fast response is usually accompanied by high overshoot level. On the other hand, very stable control without overshoot is usually achieved at the expense of a more sluggish response to set point changes and load disturbances. Therefore, compromise between fast response and low overshoot level should be made. In this paper, to overcome these contradictions and limitations, nonlinear error shaping function (ESF) is introduced to amplify gain at low error level but reduce gain at high error level. Firstly, interconnection and damping structure for the closed-loop system composed of PI controller and first-order plant is revealed based on the port-controlled hamiltonian with dissipation (PCHD) formation. Secondly, passivity analysis is performed by the interconnection and damping assignment (IDA) passivity-based control (PBC) algorithm. In simulation studies, several nonlinear error shaping functions are examined and compared to verify performance improvements.  相似文献   

10.
This paper presents a numerical method for solving nonlinear optimal control problems including state and control inequality constraints. The method is based upon rationalized Haar functions. The differential and integral expressions which arise in the system dynamics, the performance index and the boundary conditions are converted into some algebraic equations which can be solved for the unknown coefficients. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

11.
The guaranteed cost control (GCC) problem involved in decentralized robust control of a class of uncertain nonlinear large-scale stochastic systems with high-order interconnections is considered. After determining the appropriate conditions for the stochastic GCC controller, a class of decentralized local state feedback controllers is derived using the linear matrix inequality (LMI). The extension of the result of the study to the static output feedback control problem is discussed by considering the Karush-Kuhn-Tucker (KKT) conditions. The efficiency of the proposed design method is demonstrated on the basis of simulation results.  相似文献   

12.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

13.
The paper is devoted to the problem of constructing external estimates for reachable sets of a nonlinear control system. The estimates are constructed in the form of level sets of smooth functions in the space of states satisfying differential inequalities. In the system under consideration, the linear part is found, for which the corresponding functions are assumed to be known. The method proposed for estimating trajectories of a nonlinear system is based on modifying estimates for the linear part and on applying the comparison principle.  相似文献   

14.
In this paper, a nonlinear stochastic system model is proposed to describe the networked control systems (NCSs) with both random packet dropout and network-induced time-varying delay. Based on this more general nonlinear NCSs model, by choosing appropriate Lyapunov functional and employing new discrete Jensen type inequality, a sufficient condition is derived to establish the quantitative relation of maximum allowable delay upper bound, packet dropout rate and the nonlinear level to the exponential stability of the nonlinear NCSs. Design procedures for output feedback controller are also presented in terms of utilizing cone complementarities linearization algorithm or solving corresponding linear matrix inequalities (LMIs). Illustrative examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

15.
The issue of robustly exponential stability for uncertain neutral-type systems is considered in this paper. The uncertainties are nonlinear and the delays are time-varying. In terms of a linear matrix inequality (LMI), the new sufficient stability condition with delay dependence is presented. The model transformation and bounding techniques for cross terms are avoided based on an integral inequality. Two illustrative examples are proposed to show the effectiveness of our method.  相似文献   

16.
This paper investigates the global asymptotic stability (GAS) for a class of nonlinear neural networks with multiple delays. Based on Lyapunov stability theory and the linear matrix inequality (LMI) technique, a less conservative delay-dependent stability criterion is derived. The present result is shown to be less conservative than those given in the literature.  相似文献   

17.
This article examines the reliable L2 – L control design problem for a class of continuous‐time linear systems subject to external disturbances and mixed actuator failures via input delay approach. Also, due to the occurrence of nonlinear circumstances in the control input, a more generalized and practical actuator fault model containing both linear and nonlinear terms is constructed to the addressed control system. Our attention is focused on the design of the robust state feedback reliable sampled‐data controller that guarantees the robust asymptotic stability of the resulting closed‐loop system with an L2 – L prescribed performance level γ > 0, for all the possible actuator failure cases. For this purpose, by constructing an appropriate Lyapunov–Krasovskii functional (LKF) and utilizing few integral inequality techniques, some novel sufficient stabilization conditions in terms of linear matrix inequalities (LMIs) are established for the considered system. Moreover, the established stabilizability conditions pave the way for designing the robust reliable sampled‐data controller as the solution to a set of LMIs. Finally, as an example, a wheeled mobile robot trailer model is considered to illustrate the effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 309–319, 2016  相似文献   

18.
In this paper, the consensus problem of uncertain nonlinear multi‐agent systems is investigated via reliable control in the presence of probabilistic time‐varying delay. First, the communication topology among the agents is assumed to be directed and fixed. Second, by introducing a stochastic variable which satisfies Bernoulli distribution, the information of probabilistic time‐varying delay is equivalently transformed into the deterministic time‐varying delay with stochastic parameters. Third, by using Laplacian matrix properties, the consensus problem is converted into the conventional stability problem of the closed‐loop system. The main objective of this paper is to design a state feedback reliable controller such that for all admissible uncertainties as well as actuator failure cases, the resulting closed‐loop system is robustly stable in the sense of mean‐square. For this purpose, through construction of a suitable Lyapunov–Krasovskii functional containing four integral terms and utilization of Kronecker product properties along with the matrix inequality techniques, a new set of delay‐dependent consensus stabilizability conditions for the closed‐loop system is obtained. Based on these conditions, the desired reliable controller is designed in terms of linear matrix inequalities which can be easily solved by using any of the effective optimization algorithms. Moreover, a numerical example and its simulations are included to demonstrate the feasibility and effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 138–150, 2016  相似文献   

19.
In this paper, the consensus problem for nonlinear multi-agent systems with variable impulsive control method is studied. In order to decrease the communication wastage, a novel distributed impulsive protocol is designed to achieve consensus. Compared with the common impulsive consensus method with fixed impulsive instants, the variable impulsive consensus method proposed in this paper is more flexible and reliable in practical application. Based on Lyapunov stability theory and some inequality techniques, several novel impulsive consensus conditions are obtained to realize the consensus of multi-agent systems. Finally, some necessary simulations are performed to validate the effectiveness of theoretical results.  相似文献   

20.
Mathematical programming (MP) discriminant analysis models can be used to develop classification models for assigning observations of unknown class membership to one of a number of specified classes using values of a set of features associated with each observation. Since most MP discriminant analysis models generate linear discriminant functions, these MP models are generally used to develop linear classification models. Nonlinear classifiers may, however, have better classification performance than linear classifiers. In this paper, a mixed integer programming model is developed to generate nonlinear discriminant functions composed of monotone piecewise-linear marginal utility functions for each feature and the cut-off value for class membership. It is also shown that this model can be extended for feature selection. The performance of this new MP model for two-group discriminant analysis is compared with statistical discriminant analysis and other MP discriminant analysis models using a real problem and a number of simulated problem sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号