首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the US national sample from the 1995 Third International Mathematics and Science Study (TIMSS), this study examined students' competence levels in understanding the matter concept at grades 3, 4, 7, 8 and high school graduation, and compared them to the expectations in the US national science education standards. It was found that third‐grade students were developing understanding on mixtures, and fourth‐grade students were developing understanding on separating mixtures; seventh‐ and eighth‐grade students were only at the beginning level of differentiating chemical properties from physical properties; they were not ready for the particulate model of chemical change. High school physical science specialization students were still at the developing level of understanding kinetic and atomic models of chemical and physical changes; they may not be able to master those theories. The findings suggest that the Benchmarks for Science Literacy and Atlas for Science Literacy may have overestimated the competences of elementary, middle school, and high school students.  相似文献   

2.
The purpose of this study was to examine fifth grade students' ideas related to sound and to compare the Learning Cycle teaching approach with a textbook/demonstration method of instruction to determine whether one method is more effective in facilitating conceptual change. Thirty-four fifth grade students were randomly selected and assigned to the two treatment groups. To assess the students' understanding of specific sound concepts, an interview protocol was administered to both groups before and immediately after instruction. Students were given a numerical rating corresponding to their levels of understanding. The numerical values for both groups at the pre- and post-interview assessments were analyzed by analysis of variance (ANOVA). Students who were taught using the Learning Cycle had a significantly better understanding.  相似文献   

3.
Previous research has shown that secondary school students’ understanding of fractions is dominated by the part-whole concept to the possible detriment of their understanding of a fraction as a number in its own right. The present paper reports on an investigation into the understanding of intending primary teachers in this area. Four representatives of a cohort of sixty students on a PGCE course specialising in the lower primary age range were asked detailed questions probing their knowledge of fractions. The conclusion was that the part-whole concept dominates. All of the students were familiar with the numerical concept from their work on the PGCE course, but they reverted to the more familiar part-whole ideas in attempting to solve problems.  相似文献   

4.
This study explored Singaporean fourth, fifth, and sixth grade students' mathematical thinking in problem solving and problem posing. The results of this study showed that the majority of Singaporean fourth, fifth, and sixth graders are able to select appropriate solution strategies to solve these problems, and choose appropriate solution representations to clearly communicate their solution processes. Most Singaporean students are able to pose problems beyond the initial figures in the pattern. The results of this study also showed that across the four tasks, as the grade level advances, a higher percentage of students in that grade level show evidence of having correct answers. Surprisingly, the overall statistically significant differences across the three grade levels are mainly due to statistically significant differences between fourth and fifth grade students. Between fifth and sixth grade students, there are no statistically significant differences in most of the analyses. Compared to the findings concerning US and Chinese students' mathematical thinking, Singaporean students seem to be much more similar to Chinese students than to US students.  相似文献   

5.
To investigate the structure of number sense and then to assess its uses in fifth‐grade children's number sense development, a computerized number sense scale was developed and evaluated. The findings of the study indicate that the newly developed scale, with four dominant factors identified and reconfirmed, is internally consistent and substantially valid. It can be reliably used as a screening measure for a quick check of students' number sense development via online self‐assessment. Compared with our previous study, both qualitative and quantitative changes were detected in students' number sense development at different grades. The qualitative change in number sense development is manifested in different numbers of factor components produced at different grades. The quantitative change is manifested in different amounts of factor variance explained at different grades. Furthermore, among the four aspects of number sense, Taiwanese students perform best on recognizing the relative number size yet relatively worse on judging the reasonableness of computational results.  相似文献   

6.
This study analyzed the processes used by students when engaged in modeling activities and examined how students' abilities to solve modeling problems changed over time. Two student populations, one experimental and one control group, participated in the study. To examine students' modeling processes, the experimental group participated in an intervention program consisting of a sequence of six modeling activities. To examine students' modeling abilities, the experimental and control groups completed a modeling abilities test on three occasions. Results showed that students' models improved as they worked through the sequence of problem activities and also revealed a number of factors, such as students' grade, experiences with modeling activities, and modeling abilities that influenced their modeling processes. The study proposes a three-dimensional theoretical model for examining students' modeling behavior, with ubsequent implications for the teaching and learning of mathematical problem solving.  相似文献   

7.
One classroom using two units from a Standards-based curriculum was the focus of a study designed to examine the effects of real-world contexts, delays in the introduction of formal mathematics terminology, and multiple function representations on student understanding. Students developed their own terminology for y-intercept, which was tightly connected to the meaningfulness and implicit/explicit temporality of the contexts that students investigated as part of their classroom activities. This terminology held great promise for promoting the concept of y-intercept within a multiple representation environment. However, the teacher's interpretation of different activities and his assumptions about the transparency of different representations, as well as students' past experiences left the student-generated terminology and the concept of y-intercept disconnected from one another. This resulted in student-generated terminology that had limited applicability, a fragile understanding of y-intercept within different representations, and for some students, interference between their invented terminology and the concept of y-intercept itself.  相似文献   

8.
Promoting deep understanding of fraction concepts continues to be a challenge for mathematics education. Research has demonstrated that students whose concept of fractions is limited to part-whole have difficulty with advanced fraction concepts. We conducted teaching experiments to study how students can develop a measurement concept of fractions and how task sequences can be developed to promote the necessary abstractions. Building particularly on the work of Steffe and colleagues and aspects of the Elkonin-Davydov curriculum, we focused on fostering student reinvention of a measurement concept of fractions. As a study of the Learning Through Activity research program, our goal was to promote particular activity on the part of the students through which they could abstract the necessary concepts.  相似文献   

9.
When worthwhile mathematical tasks are used in classrooms, they should also become a crucial element of assessment. For teachers, using these tasks in classrooms requires a different way to analyze student thinking than the traditional assessment model. Looking carefully at students' written work on worthwhile mathematical tasks and listening carefully while students explore these worthwhile tasks can contribute to a teacher's professional development. This paper reports on a professional development activity in which teachers analyzed mathematical tasks, predicted students' achievement on tasks, evaluated students' written work, listened to students' reasoning, and assessed students' understanding. Teachers' engagement in this way can help them develop flexibility and proficiency in the evaluation of their own students' work. These experiences allow teachers the opportunity to recognize students' potential, strengthen their own mathematical understanding, and engage in conversations with peers about assessment and instruction.  相似文献   

10.
This study investigated sixth‐grade middle‐level students' geometric spatial development by gender and race within and between control and experimental groups at two middle schools as they participated in an Earth/Space unit. The control group utilized a regular Earth/Space curriculum and the experimental group used a National Aeronautics and Space Administration‐based curriculum. The quantitative data sources included the Lunar Phases Concept Inventory, Geometric Spatial Assessment, and the Purdue Spatial Visualization–Rotation Test. The results indicated the experimental males and females, and the students of color and white students in the experimental group showed significant gains in their understanding of geometric spatial visualization from pre‐ to post‐implementation. However, for the control group, the significant gains were limited to the males and the white students. The findings reveal that support is needed for males, females, and all racial groups to have the opportunity to develop their spatial reasoning, which in turn, increases students' scientific understanding.  相似文献   

11.
This research addresses the issue of how to support students' representational fluency—the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper‐and‐pencil classroom environment is targeted as a rich and pressing context to study this issue. We report results of a collaborative teaching experiment in which we designed for and tested a functions approach to solving equations with ninth‐grade algebra students, and link to results of semi‐structured interviews with students before and after the experiment. Results of analyzing the five‐week experiment include instructional supports for students' representational fluency in solving linear equations: (a) sequencing the use of graphs, tables, and CAS feedback prior to formal symbolic transpositions, (b) connecting solutions to equations across representations, and (c) encouraging understanding of equations as equivalence relations that are sometimes, always, or never true. While some students' change in sophistication of representational fluency helps substantiate the productive nature of these supports, other students' persistent struggles raise questions of how to address the diverse needs of learners in complex learning environments involving multiple tool‐based representations.  相似文献   

12.
It is proposed that the style and format of the questions used by lecturers and tutors profoundly influence students' conceptions of what mathematics is about and how it is conducted. By looking at reasons for asking questions, and becoming aware of different types of questions which mathematicians typically ask themselves, we can enrich students' experience of mathematics. Drawing on recent work by Watson and Mason stimulated by the ideas of Zygfryd Dyrszlag, the paper proposes that mathematical themes, powers, heuristics and activities generate a mathematical discourse which is not always represented in the questions students are asked, and that the real purpose of questions is to provoke students into construal, into constructing their own stories which constitute meaning and understanding, and which equip them for the future. The use of questions of whatever type depends on both scaffolding and fading their use with and in front of students, so that students internalize the questions into their own learning and doing of mathematics. The framework directed—prompted—spontaneous is proposed as an alternative to scaffolding—fading for informing interactions with students.  相似文献   

13.
Place value understanding requires the same activity that students use when developing fractional and algebraic reasoning, making this understanding foundational to mathematics learning. However, many students engage successfully in mathematics classrooms without having a conceptual understanding of place value, preventing them from accessing mathematics that is more sophisticated later. The purpose of this exploratory study is to investigate how upper elementary students' unit coordination related to difficulties they experience when engaging in place value tasks. Understanding place value requires that students coordinate units recursively to construct multi‐digit numbers from their single‐digit number understandings through forms of unit development and strategic counting. Findings suggest that students identified as low‐achieving were capable of only one or two levels of unit coordination. Furthermore, these students relied on inaccurate procedures to solve problems with millennial numbers. These findings indicate that upper elementary students identified as low‐achieving are not to yet able to (de)compose numbers effectively, regroup tens and hundreds when operating on numbers, and transition between millennial numbers. Implications of this study suggest that curricula designers and statewide standards should adopt nuances in unit coordination when developing tasks that promote or assess students' place value understanding.  相似文献   

14.
This paper explores what happens when students engage with mathematical tasks that make no attempt to be connected with students' everyday life experiences. The investigation draws on the work of educators who call for a broader view of what might count as real and relevant contexts for studying mathematics. It investigates students' experiences with two imaginative tasks and reports on the students' intellectual and emotional engagement. This engagement is examined and described in terms of the character and quality of the class and group discussions generated. Findings suggest that students can indeed engage productively with mathematics when it is explored in imaginative settings and that such contexts can help students support and sustain their engagement with the mathematics in the task.  相似文献   

15.
The goal of this research was to examine fifth graders’ understanding of fractions on the number line. This case‐study design focused on the various ways that students represented fractions on number lines. Students responded to task‐based interview questions by identifying fractions as a number on the number line as well as equivalency and problem solving. The tasks were administered individually to 26 fifth‐grade students over a 15‐minute time frame in their respective schools. The two groups of 10‐year‐old students answered most questions in written form with pencil and paper and were often asked to explain how they arrived at an answer. Student performance was highest when instructed to plot ½ on a number line of 0 to 1 as well as naming a fraction less than ½. The students performed lowest when they attempted to plot ½, ¼, and 1 on a number line with a predetermined unit 0 to 1/3. Other low performing concepts consisted of plotting ¼ on a number line from 0‐3, identifying ¼ on a non‐routine number line, and plotting a unit fraction with an equivalent fraction as well as an improper fraction on a common number line.  相似文献   

16.
This study examined the conceptions of nature of science (NOS) possessed by a group of gifted seventh‐grade students from Taiwan. The students were engaged in a 1‐week science camp with emphasis on scientific inquiry and NOS. A Chinese version of a NOS questionnaire was developed, specifically addressing the context of Chinese culture, to assess students' views on the development of scientific knowledge. Pretest results indicated that the majority of participants had a basic understanding of the tentative, subjective, empirical, and socially and culturally embedded aspects of NOS. Some conflicting views and misconceptions held by the participants are discussed. There were no significant changes in students' views of NOS after instruction, possibly due to time limitations and a ceiling effect. The relationship between students' cultural values and development of NOS conceptions and the impact of NOS knowledge on students' science learning are worth further investigation.  相似文献   

17.
This study investigated differences and shifts in learning and motivation constructs among male and female students in a nonmajors, yearlong structured inquiry college physics course and examined how these variables were related to physics understanding and course achievement. Tests and questionnaires measured students' learning approaches, motivational goals, self‐efficacy, epistemological beliefs, scientific reasoning abilities, and understanding of central physics concepts at the beginning and end of the course. Course achievement scores were also obtained. The findings showed that male students had significantly higher self‐efficacy, performance goals, and physics understanding compared to females, which persisted throughout the course. Differential shifts were found in students' meaningful learning approaches, with females tending to use less meaningful learning from beginning to end of the course; and males using more meaningful learning over this time period. For both males and females, self‐efficacy significantly predicted physics understanding and course achievement. For females, higher reasoning ability was also a significant predictor of understanding and achievement; whereas for males, learning goals and rote learning were significant predictors, but in a negative direction. The findings reveal that different variables of learning and motivation may be important for females' success in inquiry physics compared to males. Instructors should be cognizant of those needs in order to best help all students learn and achieve in college physics.  相似文献   

18.
The National Council of Teachers of Mathematics' Curriculum and Evaluation Standards in 1989 was pivotal in mathematics reform. The National Science Foundation funded several curriculum projects to address the vision described in the Standards. This study investigates students' learning in one of these Standards‐based curricula, the Connected Mathematics Project (CMP). The authors of CMP believe that the teaching and learning of algebra is an ongoing activity woven through the entire curriculum, rather than being parceled into a single grade level. The content of the study investigates students' ability to symbolically generalize functions. The data regards the solutions of four performance tasks dealing with three different types of relationships—linear, quadratic, and exponential situations—completed by five pairs of eighth‐grade students. The major finding claims that middle to high achieving students who had 3 years in the CMP curriculum demonstrated achievement in five strands of mathematical proficiency of a significant piece of algebra.  相似文献   

19.
In this study, I examine how using a writers' workshop model in mathematics creates a space for students to write about their mathematical thinking and problem solving and how their writing impacts instruction. This case study of one classroom with one teacher spanned 6 weeks and included 18 implementations of an adapted version of the Writers' Workshop (WW) in a fourth‐grade mathematics class. On a biweekly basis, the data were reviewed and changes made to the model. The analysis of the students' writing revealed (a) their understandings and misunderstandings of the mathematical content, (b) their readiness for more challenging tasks, and (c) their connections to prior knowledge. Students used writing to demonstrate their understanding of mathematics and show their mathematical processes. In some cases, examining only the numerical work failed to illuminate the students' understanding, their writing provided deeper insight. Students recognized writing as a tool for learning; this was evident in interview responses.  相似文献   

20.
The purpose of this research was to evaluate a collaborative concept‐mapping technique that was integrated into coteaching in fourth‐grade science classes in order to examine students' performance and attitudes toward the experimental teaching method. There are two fourth‐grade science teachers and four classes with a total of 114 students involved in the study. This study used a mixed method design, incorporating both quantitative and qualitative techniques. The findings showed that the two teaching methods obtained significant difference with respect to students' test scores. Using collaborative concept mapping to learn science could increase the opportunity of discussion between peers, thus fostering better organization and understanding the content. In addition, coteaching could enable teachers to share their expertise with one another. It could facilitate the implementation of collaborative concept mapping and the construction of student's concept mapping. Team teachers' attitude could affect the students' learning performance. However, some of the students had negative views on drawing concept maps because they found it was troublesome to write down many words, difficult to draw and arrange proposition, and time‐consuming. Coteachers' instant feedback and students' journal writing could guide and examine the students' concept maps to facilitate their cognitive learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号