首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
The rate of the gas phase reaction has been measured spectrophotometrically over the range 480°–550°K. The rate constant fits the equation where θ = 2.303RT in kcal/mole. This result, together with the assumption that the activation energy for the back reaction is 0 ± 1 kcal/mole, allows calculation of DH (Δ? CH2? H) = 97.4 ± 1.6 kcal/mole and ΔH (Δ? CH2·) = 51.1 ± 1.6 kcal/mole. These values correspond to a stabilization energy of 0.4 ± 1.6 kcal/mole in the cyclopropylcarbinyl radical.  相似文献   

2.
The gas phase reactions of PhCOOCH3 with I2 and Br2 were studied spectrophotometrically in a static system over the temperature ranges 344–359° and 246–303°, respectively. For each system the initial rate was first order in PhCOOCH3 and half order in halogen as the concentration of PhCOOCH3 was varied from 1.4 to 15.2 torr, that of I2 from 6.2 to 26.4 torr, and that of Br2 from 3.0 to 13.6 torr. The rate-determining step is the extraction of a methoxyl hydrogen atom: Empirical assignment of A-factors for k1 lead to for the I2 system, and to for the Br2 system, where ? = 2.303RT in kcal/mole. Combined with the assumption that E–1 = 1 ± 1 kcal/mole and 2 ± 1 kcal/mole for HI and HBr, respectively, DH (PhCOOCH2? H) calculated from the two systems shows excellent agreement at 100.2 ± 1.3 kcal/mole and 100.1 ± 1.3 kcal/mole. Using a value of δH (PhCOOMe) = –65.6 ± 1.5 kcal/mole obtained from group additivity estimates, δHf,2980 (PhCOOCH2) is calculated to be –16.7 ± 2.0 kcal/mole. Unimolecular decomposition of the Ph(CO)O°CH2 radical was also observed: with a rate constant equal to The abnormally high methoxyl C? H bond strength is discussed in relation to the bonding in ethers, alkanes, and esters.  相似文献   

3.
The kinetics of the gas-phase reaction of 2,2,2-trifluoroethyl iodide with hydrogen iodide has been studied over the temperature range of 525°K to 602°K and a tenfold variation in the ratio of CF3CH2I/HI. The experimental results are in good agreement with the expected free radical-mechanism: An analysis of the kinetic data yield: where θ =2.303RT in kcal/mol. If these results are combined with the assumption that E2 = 0 ± 1 kcal/mol, then one obtains DH (CF3CH2? I) = 56.3 kcal/mol. This result may be compared with DH(CH3CH2? I) = 52.9 kcal/mol and suggests that substitution of three fluorines for hydrogen in the beta position strengthens the C? I bond slightly.  相似文献   

4.
The kinetics of the gas-phase reaction CH3COCH3 + I2 ? CH3COCH2I + HI have been measured spectrophotometrically in a static system over the temperature range 340–430°. The pressure of CH3COCH3 was varied from 15 to 330 torr and of I2 from 4 to 48 torr, and the initial rate of the reaction was found to be consistent with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm COCH}_3 + {\rm I}^{\rm .} \stackrel{1}{\rightarrow}{\rm CH}_{\rm 3} {\rm COCH} + {\rm HI} $\end{document} as the rate-determining step. An Arrhenius plot of the variation of k1 with temperature showed considerable scatter of the points, depending on the conditioning of the reaction vessel. After allowance for surface catalysis, the best line drawn by inspection yielded the Arrhenius equation, log [k1/(M?1 sec?1)] = (11.2 ± 0.8) – (27.7 θ 2.3)/θ, where θ = 2.303 R T in kcal/mole. This activation energy yields an acetone C? H bond strength of 98 kcal/mole and δH (CH3CO?H2) radical = ?5.7 ± 2.6 kcal/mole. As the acetone bond strength is the same as the primary C? H bond strength in isopropyl alcohol, there is no resonance stabilization of the acetonyl radical due to delocalization of the radical site. By contrast, the isoelectronic allyl resonance energy is 10 kcal/mole, and reasons for the difference are discussed in terms of the π-bond energies of acetone and propene.  相似文献   

5.
The kinetics of the gas-phase thermal decomposition of 1,1,2,2-tetrafluorocyclopropane (TFC) to 1,1-difluoroethylene and CF2 was studied in the temperature range of 507.0-577.0 K and with a total pressure of 200 to 300 torr of a 1:100 mixture of reactant and C2H4. Also at 557.0 K experiments were made at different total pressures, in the range 2–20 torr with neat TFC and between 20–300 torr with the C2H4/TFC mixture, confirming that the reaction is in the high pressure limit. The reaction is first-order and the rate constants fit the following Arrhenius relationship: From this value of the activation energy, the data for the decomposition of chemically activated TFC were revised. The new results yield a minimum energy of the activated molecule of 98 ± 4 kcal/mol and ΔH(TFC) = ?155.4 ± 7 kcal/mol, while an analysis of the kinetic data yields ΔH(TFC) = ?159 ± 9 kcal/mol.  相似文献   

6.
The kinetics and equilibria of the reaction: have been studied in the temperature range 298–333 K by using the very low pressure reactor (VLPR) technique. Combining the estimated entropy change of reaction (1), ΔS = 8.1 ± 1.0 eu, with the measured ΔG, we find ΔH = 4.2 ± 0.4 kcal/mol; ΔH(CH3CHOC2H5) = ?20.2 kcal/mol, and DH° [Et OCH(Me)-H] = 91.7 ± 0.4 kcal/mol. We find: where θ = 2.3 RT in kcal/mol. It has been shown that the reaction proceeds via a loose transition state and the “contact TS” model calculation gives a very good agreement with the observed value.  相似文献   

7.
The unimolecular decomposition of but-1-yne has been investigated over the temperature range of 1052° – 1152°K using the technique of very low-pressure pyrolysis (VLPP). The primary process is C? C bond fission yielding methyl and propargyl radicals. Application of RRKM theory shows that the experimental rate constants are consistent with the highpressure Arrhenius parameters given by where θ = 2.303 RT kcal/mol. The parameters are in good agreement with estimates based on shock-tube studies. The activation energy, combined with thermochemical data, leads to DH°[HCCCH2? CH3] = 76.0, ΔH(HCC?CH2,g) = 81.4, and DH° [HCCCH2? H] = 89.2, all in kcal/mol at 300°K. The stabilization energy of the propargyl radical SE° (HCC?CH2) has been found to be 8.8 kcal/mol. Recent result for the shock-tube pyrolysis of some alkynes have been analyzed and shown to yield values for the heat of formation and stabilization energy of the propargyl radical in excellent agreement with the present work. From a consideration of all results it is recommended that ΔH(HCC?CH2,g) = 81.5±1.0, DH[HCCCH2? H] = 89.3 ± 1.0, and SE° (HCC?CH2) = 8.7±1.0 kcal/mol.  相似文献   

8.
The gas phase iodination of cyclobutane was studied spectrophotometrically in a static system over the temperature range 589° to 662°K. The early stage of the reaction was found to correspond to the general mechanism where the Arrenius parameters describing k1 are given by log k1/M?1 sec?1 = 11.66 ± 0.11 – 26.83 ± .31/θ, θ = 2.303RT in kcal/mole. The measured value of E1, together with the fact that E?1 = 1 ± 1 kcal/mole, provides ΔH(c-C4H7.) = 51.14 ± 1.0 kcal/mole, and the corresponding bond dissociation energy, D(c-C4H7? H) = 96.8 ± 1.0 kcal/mole. A bond dissociation energy of 1.8 kcal/mole higher than that for a normal secondary C? H bond corresponds to one half of the extra strain energy in cyclobutene compared to cyclobutane and is in excellent agreement with the recent value of Whittle, determined in a completely different system. Estimates of ΔH and entropy of cyclobutyl iodide are in very good agreement with the equilibrium constant K12 deduced from the kinetic data. Also in good agreement with estimates of Arrhenius parameters is the rate of HI elimination from cyclobutyl iodide.  相似文献   

9.
Pyrolysis of (CF3)2C(OH)CH2CH=CH2, the reverse of the reaction between perfluoroacetone and propene, has been studied in the gas phase between 475° and 598°K. Even at 573°K, the unimolecular reaction rate constant appears to be in its pressure-independent region at 20.0 torr pressure. In a quartz vessel, the decomposition is homogeneous. The specific unimolecular rate constant is where the limits are for one standard deviation. Combining these results with the previously reported results on the reverse reaction, the equilibrium constant for the reaction is It is noteworthy that in the temperature range of the study of the forward reaction (448° to 573°K), the percentage of back reaction in the times of the experiments varies from less than 0.1 to 1.5. Using group additivities and the above ΔH0, ΔH of (CF3)2CO is calculated to be ?325.2 kcal/mole at 600°K and the average C? C bond is 42.0 kcal/mole.  相似文献   

10.
Equilibrium constants for the reaction CH3COCH2CH3 + I2 ? CH3COCHICH3 + HI have been computed to fit the kinetics of the reaction of iodine atoms with methyl ethyl ketone. From a calculated value of S(CH3COCHICH3) = 93.9 ± 1.0 gibbs/mole and the experimental equilibrium constants, ΔH(CH3COCHICH3) is found to be ?38.2 ± 0.6 kcal/mole. The Δ(ΔH) value on substitution of a hydrogen atom by an iodine atom in the title compound is compared with that for isopropyl iodide. The relative instability of 2-iodo-3-butanone (3.4 kcal/mole) is presented as further evidence for intramolecular coulombic interaction between partial charges in polar molecules. The unimolecular decomposition of 2-iodo-3-butanone to methyl vinyl ketone and hydrogen iodide was also measured in the same system. This reaction is relatively slow compared to the formation of the above equilibrium. Rate constants for the reaction over the temperature range 281°–355°C fit the Arrhenius equation: where θ = 2.303RT kcal/mole. The stability of both the ground and transition states is discussed in comparing this activation energy with that reported for the unimolecular elimination of hydrogen iodide from other secondary iodides. The kinetics of the reaction of hydrogen iodide with methyl vinyl ketone were also measured. The addition of HI to the double bond is not rate controlling, but it may be shown that the rate of formation of 1-iodo-3-butanone is more rapid than that for 2-iodo-3-butanone. Both four- and six-center transition complexes and iodine atom-catalyzed addition are discussed in analyzing the relative rates.  相似文献   

11.
The rate of the reaction CH2I2 + HI ? CH3I + I2 has been followed spectrophotometrically from 201.0 to 311.2°. The rate constant for the reaction fits the equation, log (k1/M?1 sec?1) = 11.45 ± 0.18 - (15.11 ± 0.44)/θ. This value, combined with the assumption that E2 = 0 ± 1 kcal/mole, leads to ΔH (CH2I, g) = 55.0 ± 1.6 kcal/mole and DH (H? CH2I) = 103.8 ± 1.6 kcal/mole. The kinetics of the disproportionation, 2 CH3I ? CH4 + CH2I2 were studied at 331° and are compatible with the above values.  相似文献   

12.
The gas-phase reaction CH3SH + I2 has been studied spectrophotometrically over the temperature range of 476–604 K. It was found that the reaction undergoes H abstraction by I at ≤575 K, leading to the formation of MeSI and followed by a secondary reaction which leads to the formation of MeSSMe: Taking into consideration the effect of reaction (2), the equilibrium constant K1 (554 K) has been evaluated to be 0.025 ± 0.004. This value was combined with the estimated values S (CH3SI, g) = 73.7 ± 1.0 eu and 〈ΔC〉 = 0.87 ± 0.3 eu to obtain ΔH = 4.03 ± 0.73 kcal/mol. This yields ΔH (CH3SI, g) = 7.16 ± 0.73 kcal/mol when combined with known thermochemical values for CH3SH, HI, and I2. A kinetic study was vitiated by the concurrent heterogeneous reaction of MeSH and I2 at lower temperatures and the rather complicated chemistry occurring at elevated temperatures. However, attempts at measuring rate constants at 554 K lead to a lower limit of ΔH (CH3S·, g) ≥ 29.5 ± 2 kcal/mol when an estimated value of A = 1010.8 ± 0.2 L/mol·s for the reactionc is used. DH (CH3S–I) is estimated to be 49.3 ± 1.7 kcal/mol. The bond strengths of some divalent sulfurs and the reaction mechanisms are discussed. A crude estimate of DH0(H–CH2SH) = 96 ± 1 kcal has been obtained from the kinetic data.  相似文献   

13.
Studies of the reaction of Br + propylene to produce HBr and allyl radical were made using VLPR (Very Low Pressure Reactor) over the range 263–363 K. Apparent bimolecular rate constants k were found to vary in an inverse manner with the initial concentration of bromine atoms introduced into the reactor. Plots of k against [Br] give straight lines whose intercepts were taken to be the true bimolecular, metathesis rate constant k1. The reaction scheme is where k2 ? k1 and k?1 [HBr] is negligibly small under our conditions. Arrhenius parameters for k1 were assigned for linear and bent transition states and shown to give excellent fits to the observed intercepts. where θ = 2.303 RT (kcal mol?1). The dependence of k on [Br] is accounted for in terms of the reactivity of Br* (2P1/2) produced in the microwave discharge. The activation energy for the metathesis reaction of Br* with propylene is shown to be very small.  相似文献   

14.
The very low-pressure pyrolysis (VLPP) technique has been used to study the pyrolysis of n-propyl cyanide over the temperature range of 1090–1250°K. Decomposition proceeds via two pathways, C2? C3 bond fission and C3? C4 bond fission, with the former accounting for >90% of the overall decomposition. Application of unimolecular reaction rate theory shows that the experimental unimolecular rate constants for C2? C3 fission are consistent with the high-pressure Arrhenius parameters given by where θ=2.303RT kcal/mole. The activation energy leads to DH2980[C2H5? CH2CN]=76.9±1.7 kcal/mole and ΔH(?H2CN, g)=58.5±2.2 kcal/mole. The stabilization energy of the cyanomethyl radical has been found to be 5.1±2.6 kcal/mole, which is the same as the value for the α-cyanoethyl radical. This result suggests that DH[CH2(CN)? H] ~ 93 kcal/mole, which is considerably higher than previously reported. The value obtained for ΔH?0(?H2CN) should be usable for prediction of the activation energy for C2? C3 fission in primary alkyl cyanides, and this has been confirmed by a study of the VLPP of isobutyl cyanide over the temperature range of 1011–1123°K. The decomposition reactions parallel those for n-propyl cyanide, and the experimental data for C2? C3 fission are compatible with the Arrhenius expression A significant finding of this work is that HCN elimination from either compound is practically nonexistent under the experimental conditions. Decomposition of the radical, CH3CHCH2CN, generated by C3? C4 fission in isobutyl cyanide, yields vinyl cyanide and not the expected product, crotonitrile. This may be explained by a radical isomerization involving either a 1,2-CN shift or a 1,2-H shift.  相似文献   

15.
The gas phase reaction I2 + HCOOCH3 → HI + CH3I + CO2 has been studied spectrophotometrically in a static system over the pressure ranges I2 (6–39 torr) and HCOOMe (28–360 torr). In the temperature range 293–356°, the initial rate of disappearance of I2 is first order in [HCOOMe] and half-order in [I2]. The rate determining step is where k1 is given by where θ = 2.303 RT in kcal/mole. This activation energy gives a carbonyl C? H bond strength of 92.7 kcal/mole. At 356° there was no evidence of abstraction of a methoxy hydrogen, so a lower limit of 100 kcal/mole may be placed on this C? H bond strength. These ester C? H bond strengths are discussed in relation to comparable values in aldehydes and ethers.  相似文献   

16.
A kinetic study has been made of the gas phase, I2-catalyzed decomposition of (CH3)2S at 630–650 K. Some I2 is consumed initially, reaching a steady-state concentration. The initial major products are CH4 and CH2S together with small amounts of CH3SCH2I, CH3I, HI, and CS2. The initial reaction corresponds to a pseudo-equilibrium: accompanied by: and which brings (I2) into steady state and a final complex reaction: From the initial rate of I2 loss it is possible to obtain Arrhenius parameters for the iodination: We measure k1, (644 K) = 150 L/mol s and from both the Arrhenius plot and independent estimates A1 (644 K) = 1011.2 ± 0.3 L/mol s. Thus, E1 = 26.7 ± 1 kcal/mol. From the steady-state I2 concentration, an assumed mechanism and the known rate parameters for the CH3I/HI system. It is possible to deduce KA (644) = 3.8 × 10?2 with an uncertainty of a factor of 2. Using an estimated ΔS (644) = 4.2 ± 1.0 e.u. we find ΔHA (644) = 7.0 ± 1.1 kcal. With 〈ΔCPA〉644 = 1.2 this becomes: ΔHA(298) = 6.6 ± 1.1 kcal/mol. Then ΔH (CH3SCH2I) = 6.3 ± 1 kcal/mol. Making the assumption that E?1 = 1.0 ± 0.5 kcal/mol we find ΔH (644) = 25.7 ± 0.7 kcal/mol and with 〈ΔCPI〉 = 1.2; ΔH = 25.3 ± 0.8 kcal/mol. This gives ΔH (CH3S?H2) = 35.6 ± 1.0 kcal/mol and DH (CH3SCH2? H) = 96.6 ± 1.0 kcal/mol. This then yields Eπ(CH2S) = 52 ± 3 kcal. From the observed rate of pressure increase in the system and the preceding data k3, is calculated for the step CH3SCH2 → CH3 + CH2S. From an estimated A-factor E3 is deduced and from the overall thermochemistry values for k?3 and E?3. A detailed mechanism is proposed for the I-atom catalyzed conversion of CH2S to CS2 + CH4.  相似文献   

17.
The reaction of methyl radicals (Me) with hexafluoroacetone (HFA), generated from ditertiary butyl peroxide (dtBP), was studied over the temperature range of 402–433 K and the pressure range of 38–111 torr. The reaction resulted in the following displacement process taking place: where TFA refers to trifluoroacetone. The trifluoromethyl radicals that were generated abstract a hydrogen atom from the peroxide: such that k6a is given by: where θ = 2.303RT kcal/mol. The interaction of methyl and trifluoromethyl radicals results in the following steps: Product analysis shows that k17/kk = 2.0 ± 0.2 such that k17 = 1010.4±0.5M?1 · s?1. The rate constant k5 is given by: It is concluded that the preexponential factor for the addition of methyl radicals to ketones is lower than that for the addition of methyl radicals to olefins.  相似文献   

18.
The gas-phase dehydrogenation of cyclopentene to cyclopentadiene catalyzed by iodine in the range 178–283°C has been found to obey a rate law consistent with the slow rate-determining step, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm I} + {\rm c} - {\rm C}_5 {\rm H}_8 \stackrel{4}{\rightarrow}{\rm HI} + {\rm c} - {\rm C}_5 {\rm H}_7 $\end{document}, log [k4/(1 mole?1 sec?1)] = 10.25 ± 0.08 - (12.26 ± 0.18)/θ, where θ = 2.303 R T in kcal/mole. Surface effects are not important. This value of E4 leads to a value of DH = 82.3 ± 1 kcal/mole and ΔHf298 = 38.4 ± 1 kcal/mole. From difference in bond strengths in the alkane and the alkene, the allylic resonance stabilization in the cyclopentenyl radical is 12.6 ± 1.0 kcal/mole, in excellent agreement with the value for the butenyl radical. Arrhenius parameters for the other steps in the mechanism are evaluated. The low value of A4 (compared with A4 for cyclopentane) suggests a “tighter” transition state for H-atom abstraction from alkenes than from alkanes.  相似文献   

19.
The kinetics of gas-phase reaction of CH3CF2I with HI were studied from 496 to 549K and have been shown to be consistent with the following mechanism: A least squares treatment of the data gave where θ = 2.303 RT kcal/mole. The observed activation energy E1 was combined with E2 = 0 ± 1 kcal/mole to yield The result, combined with data for several C? I bond dissociation energies, leads us to conclude that the C(sp3)? I bond is relatively insensitive to F for H substitution and that the C(sp2)–I bond has considerable double-bond character.  相似文献   

20.
The kinetics of the radiation-induced free radical chain reactions in solutions of CCl3CClH2 and CCl2BrCH2Cl in cyclohexane (RH) were studied in the temperature range of 90–225°C. 1,1,2 trichloroethyl and 1,1,1,2 tetrachloroethyl radicals were produced by the reaction of radiolytically generated cyclohexyl (R) radicals with solutes. The reactions studied were The following rate expressins were obtained: where θ = 2.303RT in kcal/mole. From the activation parameters of the k4/k5 rate constant ratio and the assumption that E4 = E, E5 was calculated to be 20.2 ± 0.2 kcal/mole. The Arrhenius parameters for the Cl atom elimination reaction from chloroethyl radicals derived from liquid and gas-phase studies are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号