首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The room-temperature photolysis of N2O (10–100 torr) at 2139 Å to produce O(1D) has been studied in the presence of CH4 (10–891 torr). The reactions of O(1D) with CH4 were found to be The method of chemical difference was used to measure the rate constant ratio k4/(k2 + k3), where reactions (2) and (3) are The CH3 radicals produced in reaction (4) react with the O2 and NO produced in reactions (2) and (3). Thus, near the endpoint of the internal titration, ?{C2H6} gives an accurate measure of k4/(k2 + k3). For the translationally energetic O(1D) atoms produced in the photolysis, k4/(k2 + k3) = 2.28 ± 0.20. However, if He is added to remove the excess translational energy, then k4/(k2 + k3) drops to 1.35 ± 0.3.  相似文献   

2.
The decomposition of CH3CD2CH3 was studied from 713 to 853 K at pressures of 98–466 torr. The values of k1/k2 = 2.08 ± 0.05 and k3/k4 = 2.04 ± 0.66 were found independent of temperature by measuring the ratios of CH4/CH3D and CH3CHD2/CH3CD3, respectively, for the following reactions: . Isomerization of CH3CDCH3 was detected by measuring CHDCH2 formed from the isomerized radical. The expression of k21/k22 was found to be where k21 and k22 are the rate constants of . The results and conclusions are discussed and compared with previous works.  相似文献   

3.
The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

4.
The bimolecular rate constant for the direct reaction of chlorine atoms with methane was measured at 25°C by using the very-low-pressure-pyrolysis technique. The rate constant was found to be In addition, the ratio k1/k?1 was observed with about 25% accuracy: K1(298) = 1.3 ± 0.3. This gives a heat of formation of the methyl radical ΔH° f 298(CH3) = 35.1 ± 0.15 kcal/mol. A bond dissociation energy BDE (CH3 ? H) = 105.1 ± 0.15 kcal/mol in good agreement with literature values was obtained.  相似文献   

5.
A flash photolysis system has been used to study the rate of reaction (1), OH + CH4 → CH3 + H2O, using time-resolved resonance absorption to monitor OH. The temperature was varied between 300 and 900°K. It is found that the Arrhenius plot of k1 is strongly curved and k1 (T) can best be represented by the expression The apparent Arrhenius activation energy changes from 15±1 kJ/mole at 300°K to 32±2 kJ/mole at 1000°K. On either side of our temperature range, both absolute rates and their temperature dependence are in good agreement with the results from most previous investigations.  相似文献   

6.
4-Methylhexyne-1, 5-methylhexyne-1, hexyne-1, and 6-methylheptyne-2 have been decomposed in comparative-rate single-pulse shock-tube experiments. Rate expressions for the initial decomposition reactions at 1100°K and from 2 to 6 atm pressure are In combination with previous results, rate expressions for propargyl C? C bond cleavage are related to that for the alkanes by the expression These results yield a propargyl resonance energy of D(nC3H7-H) – D(C3H3-H) = 36 ± 2 kJ, in excellent agreement with a previous shock-tube study. They also lead to D(CH3C≡CCH2-H) – D(C3H3-H) = 0.6 ± 3 kJ, D(sC4H9-H) – D(iC3H7-H) = 0 ± 3 kJ, D(iC4H9-H) – D(nC3H7-H) = 2 ± 3 kJ, and D(nC3H7-H) – D(iC3H7-H) = 13.9 ± 3 kJ (all values are for 300°K). The systematics of the molecular decomposition process are explored.  相似文献   

7.
The rate of the reaction CH2I2 + HI ? CH3I + I2 has been followed spectrophotometrically from 201.0 to 311.2°. The rate constant for the reaction fits the equation, log (k1/M?1 sec?1) = 11.45 ± 0.18 - (15.11 ± 0.44)/θ. This value, combined with the assumption that E2 = 0 ± 1 kcal/mole, leads to ΔH (CH2I, g) = 55.0 ± 1.6 kcal/mole and DH (H? CH2I) = 103.8 ± 1.6 kcal/mole. The kinetics of the disproportionation, 2 CH3I ? CH4 + CH2I2 were studied at 331° and are compatible with the above values.  相似文献   

8.
The reactions have been studied competitively over the range of 28–182°C by photolysis of mixtures of Cl2 + C2F5I+ CH4. We obtain where θ = 2.303RT J/mol. The use of published data on reaction (2) leads to log (k1cm3/mol sec) = (13.96 ± 0.2) ? (11,500 ± 2000)/θ.  相似文献   

9.
i-C4H9ONO was photolyzed with 366-nm radiation at ?8, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of i-C3H7CHO, Φ{i-C3H7CHO}, was measured as a function of reaction of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.24 ± 0.02 independent of temperature. The i-C4H9O radicals can react with NO by two routes The i-C4H9O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.8 ± 0.6) × 1014, (1.7 ± 0.2) × 1015, and (3.5 ± 1.3) × 1015 molec/cm3 at 23 55, and 88°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?8 to 120°C. They fit the Arrhenius expression: For k2 ? 4.4 × 1011 cm3/s, k6 becomes (3.2 ± 2.0) × 10?13 exp{?(836 ± 159)/T} cm3/s. The reaction scheme also provides k4b/k6 = 3.59 × 1018 and 5.17 × 1018 molec/cm3 at 55 and 88°C, respectively, and k8b/k8 = 0.66 ± 0.12 independent of temperature, where   相似文献   

10.
The abstraction of hydrogen/deuterium from CH3CH2Cl, CH3CHDCl, and CH3CD2Cl by photochemically generated ground-state chlorine atoms has been investigated over the temperature range of 8–94°C using methane as a competitor. Rate constant data for the following reactions have been obtained: The temperature dependence of the relative rate constants ki/kj was found to conform to the Arrhenius rate law, where the stated error limits are one standard deviation: and kr is the rate constant for the reference reaction (CH4 + Cl → CH3 + HCl). The β secondary kinetic isotope effects (k2/k3/k4) are close to unity and show a slight inverse temperature dependence. Both preexponential factors and activation energies decrease as a result of deuterium substitution in the adjacent chloromethyl group. The trends are well outside the limits of experimental error.  相似文献   

11.
C2H5ONO was photolyzed with 366 nm radiation at ?48, ?22, ?2.5, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of CH3CHO, Φ{CH3CHO}, was measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1a = 0.29 ± 0.03 independent of temperature. The C2H5O radicals can react with NO by two routes The C2H5O radical can also react with O2 via Values of k6/k2 were determined at each temperature. They fit the Arrhenius expression: Log(k6/k2) = ?2.17 ± 0.14 ? (924 ± 94)/2.303 T. For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (3.0 ± 1.0) × 10?13 exp{?(924 ± 94)/T} cm3/s. The reaction scheme also provides k8a/k8 = 0.43 ± 0.13, where   相似文献   

12.
n-C3H7ONO was photolyzed with 366 nm radiation at ?26, ?3, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yields of C2H5CHO, C2H5ONO, and CH3CHO were measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.38 ± 0.04 independent of temperature. The n-C3H7O radicals can react with NO by two routes The n-C3H7O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.0 ± 0.2) × 1014, (3.1 ± 0.6) × 1014, and (1.4 ± 0.1) × 1015 molec/cm3 at 55, 88, and 120°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?26 to 88°C. They fit the Arrhenius expression: For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (2.9 ± 1.7) × 10?13 exp{?(879 ± 117)/T} cm3/s. The reaction scheme also provides k4b/k6 = 1.58 × 1018 molec/cm3 at 120°C and k8a/k8 = 0.56 ± 0.24 independent of temperature, where   相似文献   

13.
The reaction of hydrogen atoms with methyl nitrite was studied in a fast-flow system using photoionization mass spectrometry and excess atomic hydrogen. The associated bimolecular rate coefficient can be expressed by in the temperature range of 223-398°K. NO, CH3OH, CH4, C2H6, CH2O, and H2O are the main products; OH and CH3 radicals were detectable intermediates. The mechanism was deduced from the observed product yields using normal and deuterated reactants. The primary reaction steps were identified as followed by a rapid unimolecular decomposition of CH2ONO into CH2O and NO. Since the extent of reaction channel (1b) could not be determined independently, only extreme limits could be obtained for the individual contributions of the two channels of reaction (3) which follows the generation of CH3O radicals: The most probable values, k3a/k3 = 0.31 ± 0.30 and k3b/k3 = 0.69 ± 0.30, support the previous results on this reaction, although the range of uncertainties is much greater here.  相似文献   

14.
The kinetics and mechanism of the reaction between iodine and dimethyl ether (DME) have been studied spectrophotometrically from 515–630°K over the pressure ranges, I2 3.8–18.9 torr and DME 39.6–592 torr in a static system. The rate-determining step is, where k1 is given by log (k1/M?1 sec?1) = 11.5 ± 0.3 – 23.2 ± 0.7/θ, with θ = 2.303RT in kcal/mole. The ratio k2/k?1, is given by log (k2/k?1) = ?0.05 ± 0.19 + (0.9 ± 0.45)/θ, whence the carbon-hydrogen bond dissociation energy, DH° (H? CH2OCH3) = 93.3 ± 1 kcal/mole. From this, ΔH°f(CH2OCH3) = ?2.8 kcal and DH°(CH3? OCH2) = 9.1 kcal/mole. Some nmr and uv spectral features of iodomethyl ether are reported.  相似文献   

15.
The reaction of O(1D) with CH4 was studied to determine the efficiency of H2 production in a direct process, and it was found to be 0.11 ± 0.02. Thus the two channels which account for all of the reaction between O(1D) and CH4 in the gas phase are   相似文献   

16.
The kinetics of the thermal elimination of HF from 1,2-difluoroethane have been studied in a static system over the temperature range 734–820°K. The reaction was shown to be first order and homogeneous, with a rate constant of where θ = 2.303RT in kcal/mole. The A-factor falls within the normal range for such reactions and is in line with transition state theory; the activation energy is similarly consistent with an estimate based on data for the analogous reactions of ethyl fluoride and other alkyl halides. The above activation energy has been compared with values of the critical energy calculated from data on the decomposition of chemically activated 1,2-difluoroethane by the RRKM theory and the bond dissociation energy, D(CH2F? CH2F) = 88 ± 2 kcal/mole, derived. It follows from thermochemistry that ΔHf0(CH2F) = -7.8 and D(CH2F? H) = 101 ± 2 kcal/mole. Bond dissociation energies in fluoromethanes and fluoroethanes are discussed.  相似文献   

17.
The gas-phase photochlorination of perfluorocyclopentene under continuous and intermittent illumination with 4360-Å radiation was studied between 10° and 60°C. The rate constants for the reactions. (3) (4) were measured as k3 = (1.20 + 0.58) × 108 exp (?6.430 ± 177/RT) l·(mole sec) and k4 = (1.86 ± 0.76) × 107 l·(mole sec).  相似文献   

18.
Time-resolved measurements of the oxygen atom concentration during shock-wave initiated combustion of low-density (25 ≤ p ≤ 175 kPa) H2? O2? CO? CO2? Ar mixtures have been made by monitoring CO + O → CO2 + hv (3 to 4 eV) emission intensity, calibrated against partial equilibrium conditions attained promptly at H2:O2 = 1. Significant transient excursions (“spikes”) of [O] above constant-mole-number partial-equilibrium levels were found from 1400 to 2000°K for initial H2:O2 ratios of 16 and 10 and below ± 1780°K for H2:O2 = 6; they did not occur in this range for H2:O2 ± 4. Numerical treatment of the H2? O2? CO ignition mechanism for our conditions showed [O] to follow a steady-state trajectory governed by large production and consumption rates from the reactions with a pronounced maximum in the production term ka[H][O2]. The measured spike concentration data determine kb/ka = 3.6 ± 20%, independent of temperature over 1400 ≤ T ≤ 1900°K, which with well-established ka data yields This result reinforces the higher of several recent combustion-temperature determinations, and its correlation with results below 1000°K produces a distinctly concave upward Arrhenius plot which is closely matched by BEBO transition state calculations.  相似文献   

19.
N2O was photolyzed at 2139 Å to produce O(1D) atoms in the presence of H2O and CO. The O(1D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative importance of the various possible O(1D )–H2O reactions is The relative rate constant for O(1D) removal by H2O compared to that by N2O is 2.1, in good agreement with that found earlier in our laboratory. In the presence Of C3H6, the OH can be removed by reaction with either CO or C3H6: From the CO2 yield, k3/k2 = 75,0 at 100°C and 55.0 at 200°C to within ± 10%. When these values are combined with the value of k2 = 7.0 × 10?13exp (–1100/RT) cm3/sec, k3 = 1.36 × 10?11 exp (–100/RT) cm3/sec. At 25°C, k3 extrapolates to 1.1 × 10?11 cm3/sec.  相似文献   

20.
Spectrophotometric methods have been used to obtain rate laws and rate parameters for the following reactions: with ka, kb, Ea, Eb having the values 85±5 l./mole · s, 5.7±0.2 s?1 (both at 298.2°K), and 56±4 and 66±2 kJ/mole, respectively. with kc=0.106±0.004 l./mole ·s at 298.2°K and Ec=67±2 kJ/mole. with kd=(3.06 ±; 0.15) × 10?3 l./mole ·s at 298.2°K and Ed=66±2 kJ/mole. Mechanisms for these reactions are discussed and compared with previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号