首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectra of vinyl chloride—propylene copolymers irradiated at low temperature in vacuum have been obtained at selected temperatures in the range 130–335°K. Copolymers and PVC homopolymer pass through identical intermediate states of dehydrochlorination in which alkyl, allyl, and polyenyl radicals are observed. Substantial spectral differences between copolymers and PVC appearing in the final states of dehydrochlorination after warming above room temperature are consistent with shorter average polyene lengths in the copolymers. This probably results from termination of polyene growth by propylene comonomer. Spectral differences at long wavelength between copolymers with varying amounts of propylene are minor compared to the basic changes between copolymer and homopolymer.  相似文献   

2.
Retardation of discoloration of poly(vinyl chloride) with diimide was studied in dimethylformamide at 130°C. with the use of p-toluenesulfonylhydrazide (PSH) as a source of diimide. A process was proposed that involved prolonging the induction periods of discoloration by inhibiting the development of conjugated polyene structure. The optimum proportion of PSH was one fourth of the poly(vinyl chloride), the best results. Furthermore, poly(vinyl chloride) discolored by thermal degradation in o-dichlorobenzene or gamma-ray irradiation under vacuum was decolorized in solution at 130°C. by addition of PSH. The decolorized poly(vinyl chloride) thus obtained was thermally stable compared with that obtained by oxidative methods.  相似文献   

3.
Attempts have been made unsuccessfully to homopolymerize a number of allyl esters of substituted fatty acids by radical initiation in emulsion systems. Copolymerizations of these allyl esters with styrene, methyl methacrylate, and vinyl chloride have been investigated. Of these comonomers, styrene and methyl methacrylate do not copolymerize well with the allyl esters, whereas vinyl chloride does. Reactivity ratios for the radical copolymerization of allyl 11-iodoundecanoate, M1, and vinyl chloride, M2, determined at 60°C. in benzene, are r1 = 0.42 and r2 = 1.64. A copolymer of allyl 10, 11-dibromoundecanoate and vinyl chloride was fractionated and found to be fairly homogeneous.  相似文献   

4.
4-Methyl-2,6-di-tert-butylphenol strongly retards the free radical polymerization of vinyl acetate initiated by azobisisobutyronitrile. The chain transfer constant, estimated from rate data, is 0.020 ± 0.004 at 35°C and does not vary significantly with temperature. Molecular weight data lead to transfer constants of 0.023, 0.020, and 0.024 at 35, 45, and 55°C, respectively. A mean kinetic isotope effect of 9.8 ± 1.0 is observed for the phenol deuterated at the OH group, showing that the main attack of poly(vinyl acetate) radicals on the phenol involves hydrogen abstraction from this group. The activation energy for hydrogen abstraction is estimated to be 7.8 kcal/mole, and the rate constant at 50°C is 160 ± 40 1./mole-sec. The stationary concentration of 4-methyl-2,6-di-tert-butylphenoxyl in the polymerization mixture is proportional to the phenol concentration and is independent of the initiator concentration, as shown by electron spin resonance studies. Cross termination of poly(vinyl acetate) and phenoxy radicals occurs to a greater extent than mutual termination of these radicals. The rate constant for cross termination is close to 1 × 108 1./mole-sec at 50°C; the activation energy for cross termination is 2.9 ± 1.3 kcal/mole.  相似文献   

5.
Elementary processes of γ-irradiated polyvinylchloride (PVC) have been investigated by both electron spin resonance (ESR) and optical absorption measurements. On irradiating PVC film with γ rays at ?196°C, alkyl-type radicals are produced. When the PVC film is warmed to room temperature, the radicals convert to polyenyl type. γ Irradiation of PVC film containing biphenyl (Ph2) or pyrene (Py) at ?196°C yields the corresponding radical cation. The relative ESR peak heights of the radicals decrease and the G values for the formation of cation radicals increase with increasing additive concentrations. These facts indicate that energy is transferred from the precursor of the radicals to the additive. In the case of PVC film containing Py, the Py cation radical decreases and the cyclohexadienyl-type radical from Py is produced by thermal annealing. A possible mechanism for radical formation and conversion is proposed.  相似文献   

6.
The first example of living radical polymerization of vinyl chloride carried out in water at 25 °C is reported. This polymerization was initiated by iodoform and catalyzed by nascent Cu0 produced by the disproportionation of CuI in the presence of strongly CuII binding ligands such as tris(2‐aminoethyl)amine or polyethyleneimine. The resulting poly(vinyl chloride) was free of structural defects, had controlled molecular weight and narrow molecular weight distribution, contained two ~CHClI active chain ends, and had a higher syndiotacticity (62%) than the one obtained by conventional free‐radical polymerization at the same temperature (56%). This novel polymerization proceeds, most probably, by a combination of competitive pathways that involves activation by single electron transfer mediated by nascent Cu0 and degenerative chain transfer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3283–3299, 2003  相似文献   

7.
The binary radical copolymerization of acrylic acid amides (acrylamide and N-cyclohexen-1-ylacrylamide) with alkenyl halides (vinyl chloride, vinyl bromide, and allyl chloride) has been studied. The constants of relative activity of the monomers used are calculated. For the systems under investigation, the occurrence of dehydrochlorination of a polymer chain and protonation of a carbonyl group occur is confirmed. Allyl chloride shows the most pronounced tendency toward dehydrochlorination, while in the case of vinyl chloride, this tendency is the least distinct. The polymer-analogous transformations result in copolymers containing polyene fragments and units of ammonium or oxonium amide salts.  相似文献   

8.
Allyl telechelic polyisobutylene (allyl‐PIB‐allyl) is of great commercial and scientific interest produced by living polymerization of isobutylene followed by functionalization (allylation with allyltrimethylsilane) under external cooling, typically to ?78 °C. Cooling is cumbersome and costly, and temperature control is far from ideal. Herein we describe the quantitative preparation of allyl‐PIB‐allyl under ideal internal temperature control at ~?40 °C using refluxing propane/methyl chloride mixtures. The exact composition of the nonpolar/polar solvents and polymerization time crucially affect product quality. Well‐defined allyl‐PIB‐allyl is obtained using 60/40 (v/v) refluxing propane/methyl chloride and terminating not more than 5 min after monomer depletion. In pure refluxing propane or methyl chloride, or at longer reaction times, byproducts form that compromise product quality. A mechanism is presented to explain the observations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1784–1789  相似文献   

9.
Trimethyl phosphite, (MeO)(3)P, is introduced as an efficient and selective trap in oxiranylcarbinyl radical (2) systems, formed from haloepoxides 8-13 under thermal AIBN/n-Bu(3)SnH conditions at about 80 degrees C. Initially, the transformations of 8-13, in the absence of phosphite, to allyl alcohol 7 and/or vinyl ether 5 were measured quantitatively (Table 1). Structural variations in the intermediate oxiranylcarbinyl (2), allyloxy (3), and vinyloxycarbinyl (4) radicals involve influences of the thermodynamics and kinetics of the C-O (2 --> 3, k(1)) and C-C (2 --> 4, k(2)) radical scission processes and readily account for the changes in the amounts of product vinyl ether (5) and allyl alcohol (7) formed. Added (MeO)(3)P is inert to vinyloxycarbinyl radical 4 and selectively and rapidly traps allyloxy radical 3, diverting it to trimethyl phosphate and allyl radical 6. Allyl radicals (6) dimerize or are trapped by n-Bu(3)SnH to give alkenes, formed from haloepoxides 8, 9, and 13 in 69-95% yields. Intermediate vinyloxycarbinyl radicals (4), in the presence or absence of (MeO)(3)P, are trapped by n-Bu(3)SnH to give vinyl ethers (5). The concentrations of (MeO)(3)P and n-Bu(3)SnH were varied independently, and the amounts of phosphate, vinyl ether (5), and/or alkene from haloepoxides 10, 11, and 13 were carefully monitored. The results reflect readily understood influences of changes in the structures of radicals 2-4, particularly as they influence the C-O (k(1)) and C-C (k(2)) cleavages of intermediate oxiranylcarbinyl radical 2 and their reverse (k(-1), k(-2)). Diversion by (MeO)(3)P of allyloxy radicals (3) from haloepoxides 11 and 12 fulfills a prior prediction that under conditions closer to kinetic control, products of C-O scission, not just those of C-C scission, may result. Thus, for oxiranylcarbinyl radicals from haloepoxides 11, 12, and 13, C-O scission (k(1), 2 --> 3) competes readily with C-C cleavage (k(2), 2 --> 4), even though C-C scission is favored thermodynamically.  相似文献   

10.
The initial stages of the free radical polymerization of diethylene glycol bis(allyl carbonate) at temperatures of 35–65°C have been studied. The polymer is unsaturated and cyclization to give a 16-membered ring occurs only to a small extent. The kinetic order with respect to the initiator, di-sec-butyl peroxydicarbonate, has an average value of 0.79; the order increases slightly with peroxydicarbonate concentration over the range 0.018–0.22M. The molecular weight of the polymer isolated after 3% polymerization is close to 19,000. It shows no significant dependence on initiator concentration or on temperature. The dominant feature of the bulk polymerization, as in free radical polymerization of the other allyl and diallyl monomers, is degradative chain transfer in which the growing polymer radical abstracts a hydrogen atom from a monomer unit to give a relatively unreactive allylic radical. The dependence of rate on initiator concentration is rationalized if some of these allylic radicals are able to reinitiate polymerization. The transfer constant to monomer is 0.014 at 50°C, assuming that the main termination step involves mutual termination of allylic radicals. Carbon tetrachloride is an active transfer agent with a transfer constant of 0.20 ± 0.04 at 50°C. Toluene, which is less active, has a transfer constant of 0.0064 at 50°C and also retards the polymerization. Some kinetic studies have been made with other initiators, including di-2-methyl-pentanoyl peroxide which initiates polymerization at temperatures as low as 13°C.  相似文献   

11.
Nitroxyl radicals can trap fatty acid allyl radicals on ferric‐lipoxygenases at lower oxygen content, which are an intermediate in the lipoxygenase reaction. In the present study, we examined whether nitroxyl radical‐trapping of fatty acid allyl radicals on the enzyme proceeds in biological fluids with abundant antioxidants. The fatty acid allyl radical–nitroxyl radical adducts were quantified by HPLC with electrochemical detection (HPLC‐ECD); the adducts in eluate degraded into nitroxyl radical by passing through heating coil at 100°C, and then nitroxyl radical was detected by electrochemical detector. Soybean 15‐lipoxygenase and nitroxyl radical (3‐carbamoyl‐2,2,5,5‐tetramethyl‐3‐pyrroline‐N‐oxyl, CmΔP) were mixed with rat serum prepared from fresh venous blood, and the solution was stood at 37°C for 1 h. One volume of the solution was mixed with 5 vols of cold acetonitrile. After centrifugation, the supernatant was subjected to HPLC‐ECD. Arachidonate allyl radical–CmΔP adducts as well as linoleate allyl radical–CmΔP adducts were detected in the solution, and the content of these adducts remarkably increased in the presence of phospholipase A2. It is proved for the first time that nitroxyl radical traps fatty acid allyl radicals generated in the lipoxygenase reaction in biological fluid without competition from endogenous antioxidants. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A variety of conditions, including catalysts [CuCl, CuI, Cu2O, and Cu(0)], ligands [2,2′‐bipyridine (bpy), tris(2‐dimethylaminoethyl)amine (Me6‐TREN), polyethyleneimine, and hexamethyl triethylenetetramine], initiators [CH3CHClI, CH2I2, CHI3, and F(CF2)8I], solvents [diphenyl ether, toluene, tetrahydrofuran, dimethyl sulfoxide (DMSO), dimethylformamide, ethylene carbonate, dimethylacetamide, and cyclohexanone], and temperatures [90, 25, and 0 °C] were studied to assess previous methods for poly(methyl methacrylate)‐b‐poly(vinyl chloride)‐b‐poly(methyl methacrylate) (PMMA‐b‐PVC‐b‐PMMA) synthesis by the living radical block copolymerization of methyl methacrylate (MMA) initiated with α,ω‐di(iodo)poly(vinyl chloride). CH3CHClI was used as a model for α,ω‐di(iodo)poly(vinyl chloride) employed as a macroinitiator in the living radical block copolymerization of MMA. Two groups of methods evolved. The first involved CuCl/bpy or Me6‐TREN at 90 °C, whereas the second involved Cu(0)/Me6‐TREN in DMSO at 25 or 0 °C. Related ligands were used in both methods. The highest initiator efficiency and rate of polymerization were obtained with Cu(0)/Me6‐TREN in DMSO at 25 °C. This demonstrated that the ultrafast block copolymerization reported previously is the most efficient with respect to the rate of polymerization and precision of the PMMA‐b‐PVC‐b‐PMMA architecture. Moreover, Cu(0)/Me6‐TREN‐catalyzed polymerization exhibits an external first order of reaction in DMSO, and so this solvent has a catalytic effect in this living radical polymerization (LRP). This polymerization can be performed between 90 and 0 °C and provides access to controlled poly(methyl methacrylate) tacticity by LRP and block copolymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1935–1947, 2005  相似文献   

13.
The flow behavior of 10, 15, and 25% solutions of high molecular weight, thermally stable poly(vinyl chloride) in cyclohexanone was studied in the temperature range 50–140°C with respect to fiber-forming properties. The flow behavior of such solutions at shear rates ranging from 1–103 sec?1 is pronouncedly non-Newtonian with the exception of the 10% solution at 70°C. It can be adequately described by known empirical linear relationships. The apparent viscosities and activation energies are considerably higher than those for the usual types of poly(vinyl chloride), but vary within limits acceptable for the preparation and spinning of solutions.  相似文献   

14.

HCl elimination in low ratio was first carried out from poly(vinyl chloride) to increase allylic chlorines. Partially dehydrochlorinated poly(vinyl chloride), having a macroinitiator effect, was grafted with tert‐butyl methacrylate via atom transfer radical polymerization in the presence of CuBr/2,2′‐bipyridine at 64°C in tetrahydrofuran. Original poly(vinyl chloride) was also grafted with tert‐butyl methacrylate under the same conditions to compare with that of partially dehydrochlorinated poly(vinyl chloride). The graft copolymers were characterized by elemental analysis, FTIR, 1H and 13C‐NMR, differential scanning calorimetry, and gel permeation chromatography (GPC). Thermal stabilities of the graft copolymers were investigated by thermogravimetric analysis as compared with those of the macroinitiators.  相似文献   

15.
Acrylonitrile–styrene, vinyl chloride–styrene and vinyl chloride–methyl methacrylate block copolymers were obtained by employing trapped radicals in polyacrylonitrile or poly(vinyl chloride) formed in a heterogeneous system by tri-n-butylboron in air as initiator. The trapped polymer radicals were activated on addition of dimethylformamide as solvent. Confirmation of block copolymers was carried out with solvent extractions, elementary analysis, and turbidimetry. In block copolymerization, the polyacrylonitrile trapped radical was more active than the poly(vinyl chloride) radical. Results of kinetic studies were used to consider the mechanism of polymerization.  相似文献   

16.
We studied the chemical reaction process of polypropylene (PP), ethylene‐propylene copolymer (EPM), and ethylene‐propylene‐diene copolymer (EPDM) crosslinking induced by dicumyl peroxide (DCP) using electron spin resonance (ESR). Free radicals appeared at an elevated temperature of around 120 °C and the behavior and kinetics of the reaction process were observed at 180 °C. The radical species detected in PP were alkyl type radicals, formed by the abstraction of hydrogen atoms from the tertiary carbon of polymer chains. For EPDM containing a diene component, the radicals were trapped at double bonds in this diene component to form allyl radicals. The resolutions of these spectra were extremely clear; hence, isotropic spectra of these polymer radicals were obtained. We measured the ESR at high temperatures and confirmed that the process of crosslinking induced by DCP was a free radical reaction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3383–3389, 2000  相似文献   

17.
ESR spectra of the trapped radicals in an ultra-high molecular weight polyethylene (UHMW-PE) fiber irradiated by gamma rays showed well-resolved hyperfine splitting at room temperature since the c-axis of the crystallites is aligned with the fiber direction and the radicals are trapped in crystallites. The alkyl radical (?CH2??CH?CH2?) was the major product after irradiation in vacuum and in air at room temperature. Some of the alkyl radicals converted to allyl radicals (?CH2??CH?CH=CH?) and polyenyl radicals (?CH2??CH?(CH=CH)n?CH2?) during storage in vacuum. Upon storage in air atmosphere, the alkyl radicals decayed by reaction with oxygen. Of particular interest is the very slow decay rate of the alkyl radical trapped in UHMW-PE fiber, the half-life is 26 days in vacuum, and 13 days in air at room temperature, which is about 1/30 and 1/100 of that reported for high density polyethylene (HDPE), respectively. The extremely long lifetime of the alkyl radical is supposed to be caused by the large size of crystallites in UHMW-PE fiber. The rate of radical decay was accelerated by annealing at elevated temperature.  相似文献   

18.
Allyl methacrylate was polymerized in CCl4 solution by α,α′‐azoisobutyronitrile at 50, 60, and 70°C. The kinetic curves were auto‐accelarated types at 60 and 70°C, but almost linear at 50°C. Arrhenius activation energy was 77.5 kJ/mol. The polymer was insoluble in common organic solvents. It was characterized by FT‐IR, NMR, DSC, TGA and XPS methods. About 98–99% of allyl side groups were remained as pendant even after completion of the polymerization. The spectroscopic and thermal results showed that polymerization is not a cyclopolymerization type, but may have end group cyclization. The high molecular weight is the main cause of a polymer being insoluble even in the early stage of the polymerization. Molecular weight of 1.1×106 for a soluble polymer fraction was measured by light scattering method. The Tg of polymer was 94°C, and after curing at 150–200°C, increased to 211°C. The thermal pyrolysis of polymer at about 350°C gave an anhydride by linkage type degradation, and side group cyclization. The XPS analysis showed the presence of radical fragments of AIBN (initiator) and CCl4 (solvent) associated with oligomers.  相似文献   

19.
Three allyl ethers, viz. the ethyl, 2-hydroxyethyl and phenyl compounds, have been examined as additives in radical polymerizations of styrene (STY), methyl methacrylate (MMA) and acrylonitrile (ACN) at 60°C using azobisisobutyronitrile as initiator. As retarders and transfer agents, the ethers are considerably more effective with ACN than with the other monomers. Allyl phenyl ether engages in significant copolymerization with ACN and slight copolymerization with MMA; there is negligible incorporation in polySTY.  相似文献   

20.
Polymers have been prepared at 60 and 100°C using initiators giving the 2-cyano-2-propyl radical enriched with carbon-13 in the nitrile group. Examination by NMR of the (CH3)2C(CN)? end groups in the resulting polymers of vinyl acetate (VAC) and of appropriate model compounds has indicated that up to 20% of these end groups correspond to the product of head-addition of the primary radical to VAC at 60°C. Similar end groups have been found in poly(vinyl formate) but not in poly(methyl methacrylate) and polystyrene. In polyVAC prepared at 100°C, the proportion of end groups attached to the head of a monomeric unit is higher than for polymers made at 60°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号