首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of damping the sloshing in tanks with sharp-edged baffles (thin inserts which partially span a longitudinal or transverse cross-section) is considered. Separation of the boundary layer and the formation of vortices occur at these sharp edges. It is assumed that the domains where there is significant vortex motion of the fluid are localized in small neighbourhoods of the sharp edges of the baffles. The non-linear vortex damping is determined from the distribution of the velocity intensity factors at these sharp edges in the same way as the linear damping, caused by the dissipation of energy in a boundary layer close to a wall, is determined from the fluid velocity distribution on the walls of a cavity. Both of the above-mentioned distributions are calculated by solving the same boundary-value problem on the oscillations of an ideal fluid. The second of the distributions characterizes the singular properties of the solutions of this problem on particular lines. A method based on the variation of the area of the baffles, which simplifies the calculation of the velocity intensity factors is described. The distinctive features arising when the method of finite elements is used are considered. The results of numerical calculations of the damping of sloshing in a cylindrical tank with a ring baffle are compared with experimental data.  相似文献   

2.
An exact method is presented for obtaining uniformly translating distributions of vorticity in a two-dimensional ideal fluid, or equivalently, stationary distributions in the presence of a uniform background flow. These distributions are generalizations of the well-known vortex dipole and consist of a collection of point vortices and an equal number of bounded vortex sheets. Both the vorticity density of the vortex sheets and the velocity field of the fluid are expressed in terms of a simple rational function in which the point vortex positions and strengths appear as parameters. The vortex sheets lie on heteroclinic streamlines of the flow. Dipoles and multipoles that move parallel to a straight fluid boundary are also obtained. By setting the translation velocity to zero, equilibrium configurations of point vortices and vortex sheets are found.  相似文献   

3.
We revisit in this paper the theory of axisymmetric vortex rings in an ideal fluid. The boundary separating the vortex ring from the external (potential) flow is assumed of elliptic shape. For a given distribution of vorticity in the vortex core, we theoretically put into evidence the critical parameter for the existence of non-trivial solutions, thus confirming the numerical observation of Durst et al. [ZAMP 32 (1981) 156]. A sharp estimation of the critical threshold is analytically derived. Theoretical predictions are confirmed by numerical simulations using finite elements. A new numerical algorithm is presented and shown to display better performances compared to previous published algorithms using finite differences. The convergence of the iterative algorithm is proved using the theory of elliptic partial differential equations with discontinuous nonlinearities.  相似文献   

4.
The production of a vortex ring formed by using a piston to drive fluid through an orifice is considered. A cylindrical vortex sheet is supposed to be formed initially which rolls up into a vortex ring. Energy and momentum are conserved during rollup and determine the speed and size of the ring. It is shown that these quantities are independent of the vorticity distribution in the core of the ring. Reasonable agreement with experimental observations is found. A speculation is made about the criterion for the rings to be laminar or turbulent.  相似文献   

5.
We describe a model for the dynamic interaction of a sphere with uniform density and a system of coaxial circular vortex rings in an ideal fluid of equal density. At regular intervals in time, a constraint is imposed that requires the velocity of the fluid relative to the sphere to have no component transverse to a particular circular contour on the sphere. In order to enforce this constraint, new vortex rings are introduced in a manner that conserves the total momentum in the system. This models the shedding of rings from a sharp physical ridge on the sphere coincident with the circular contour. If the position of the contour is fixed on the sphere, vortex shedding is a source of drag. If the position of the contour varies periodically, propulsive rings may be shed in a manner that mimics the locomotion of certain jellyfish. We present simulations representing both cases.  相似文献   

6.
We consider the interaction of two vortex patches (elliptic Kirchhoff vortices) which move in an unbounded volume of an ideal incompressible fluid. A moment second-order model is used to describe the interaction. The case of integrability of a Kirchhoff vortex and a point vortex by the variable separation method is qualitatively analyzed. A new case of integrability of two Kirchhoff vortices is found. A reduced form of equations for two Kirchhoff vortices is proposed and used to analyze their regular and chaotic behavior.  相似文献   

7.
《Applied Mathematical Modelling》2013,37(24):10007-10026
In present paper a three-dimensional Vortex-In-Cell method with two-way coupling effect was developed to study the bubble plume entrainment by a vortex ring. In this method the continuous flow was calculated by the three-dimensional Vortex-In-Cell method and the bubbles are tracked through bubble motion equation. Two-way coupling effect between continuous flow and dispersed bubbles is considered by introducing a vorticity source term, which is induced by the change of void fraction gradient in each computational cell. After validated by the comparison between experimental measurements and simulation results for the motion of vortex rings and the rising velocity of bubble plume, present method is implemented to simulate the interaction between an evolving vortex ring and a rising bubble plume. It was found that there is little effect of the bubble entrainment to the total circulation of vortex ring while the effect of bubble entrainment to the vortex ring structure is quite obvious. The bubble entrainment by the vortex ring not only changed the vorticity distribution in the vortex structure, but also displaced the positions of the vortex cores. The vorticity in the lower vortex core of the vortex ring decreases more than that in the upper vortex core of the vortex ring while the vortex core in the upper part of the vortex ring is displaced to the center of vortex ring by the entrained bubbles. Smaller bubbles are easier to be entrained by the large scale vortex structure and the transportation distance is in inverse proportion to bubble diameter.  相似文献   

8.
流体动力学方程的三维旋涡解的可叠加性   总被引:2,自引:1,他引:1  
黄永念  胡欣 《应用数学和力学》2000,21(12):1227-1237
给出了流体动力学方程的轴对称流动的一类精确解,讨论了一些例子并综述了目前已知的基本涡元精确解。发现三维空间内的某些旋涡解可以叠加成仍然满足非线性方程的新的精确解。由此可以用来分析旋涡的产生、演化和相互作用。此外还讨论了旋涡解的对称性。  相似文献   

9.
10.
In contrast to the Euler–Poincaré reduction of geodesic flows of left- or right-invariant metrics on Lie groups to the corresponding Lie algebra (or its dual), one can consider the reduction of the geodesic flows to the group itself. The reduced vector field has a remarkable hydrodynamic interpretation: it is the velocity field for a stationary flow of an ideal fluid. Right- or left-invariant symmetry fields of the reduced field define vortex manifolds for such flows. Now we consider a mechanical system, whose configuration space is a Lie group and whose Lagrangian is invariant with respect to left translations on this group, and assume that the mass geometry f the system may change under the action of internal control forces. Such a system can also be reduced to a Lie group. Without controls, this mechanical system describes a geodesic flow of the left-invariant metric, given by the Lagrangian, and, therefore, its reduced flow is a stationary ideal fluid flow on the Lie group. The standard control problem for such system is to find the conditions under which the system can be brought from any initial position in the configuration space to another preassigned position by changing its mass geometry. We show that under these conditions, by changing the mass geometry, one can also bring one vortex manifold to any other preassigned vortex manifold. Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 61, Optimal Control, 2008.  相似文献   

11.
In the reduced phase space by rotation, we prove the existence of periodic orbits of the n-vortex problem emanating from a relative equilibrium formed by n unit vortices at the vertices of a regular polygon, both in the plane and at a fixed latitude when the ideal fluid moves on the surface of a sphere. In the case of a plane we also prove the existence of such periodic orbits in the (n + 1)-vortex problem, where an additional central vortex of intensity κ is added to the ring of the polygonal configuration.  相似文献   

12.
The vortex properties of ideal fluid flows are examined. It is shown that the barotropy assumption in classical theorems of the conservation of vortex properties of a fluid can be replaced by the adiabaticity assumption. In that case, the connection between the formation and evolution of anomalous atmospheric phenomena and significant violations of adiabaticity in the movement of air masses can be traced.  相似文献   

13.
The dynamically equilibrium shapes of a uniform-density rotating mass of liquid (a ring) in the surface layer of a quiescent stratified ocean are determined. The examination is carried out in a plane tangential to the Earth, taking into account the vertical and horizontal projections of the angular velocity of its rotation. Exact solutions of the equations of motion of an ideal incompressibe fluid are obtained, making it possible, for a linearly stratified ocean, to determine the dynamic all equilibrium shape of the interfaces of water masses and the free boundaries of cyclonic and antocyclonic rings. These shapes comprise second-order surfaces inclined to the water level in the meridian plane, the type of surfaces depending on the governing parameters of the problem. Expressions are obtained for the angles of inclination of the principal axes. For small deviations from equilibrium, due to a difference in the gravitational forces and Archimedes forces, motion of the ring occurs, governed by the inclination of the principal axes and the nature of change (increase or reduction) in the average density of the ring, determined by the ratio of the rates of diffusion of heat and salt. The displacement along the parallel comprises geostrophic motion, for the velocity of which an analytical expression is obtained. The displacement along the meridian comprises motion over an inclined plane. An analytical expression is given that relates the change in the depth of the centre of mass of the ring to the velocity of motion along the meridian through the angle of inclination of the principal axes of the ring. This explains the motion of both types of Gulf Stream ring to the south-west and of the Oyasio ring to the north-east.  相似文献   

14.
A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds–Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer–Meshkov fluid vortices (long wavelength stability) is presented.  相似文献   

15.
We consider an integrable Hamiltonian system describing the motion of a circular cylinder and a vortex filament in an ideal fluid. We construct bifurcation diagrams and bifurcation complexes for the case in which the integral manifold is compact and for various topological structures of the symplectic leaf. The types of motions corresponding to the bifurcation curves and their stability are discussed.  相似文献   

16.
广义二阶流体涡流速度的衰减和温度扩散   总被引:2,自引:1,他引:1  
将分数阶微积分运算引入到二阶流体的本构关系中,建立了带分数阶导数的广义二阶流体模型.研究了广义二阶流体涡流速度的衰减和温度扩散,利用分数阶导数的Laplace变换和广义Mittag-Leffler函数,得到了涡流速度场和温度场的精确解,分析了分数阶指数对涡流速度的衰减和温度扩散的影响.  相似文献   

17.
We consider the problem of motion of axisymmetric vortex rings in an ideal incompressible fluid. Using the topological approach, we present a method for complete qualitative analysis of the dynamics of a system of two vortex rings. In particular, we completely solve the problem of describing the conditions for the onset of leapfrogging motion of vortex rings. In addition, for the system of two vortex rings we find new families of motions where the relative distances remain finite (we call them pseudo-leapfrogging). We also find solutions for the problem of three vortex rings, which describe both the regular and chaotic leapfrogging motion of vortex rings.  相似文献   

18.
We prove that two initially concentrated vortices with opposite vorticity of an incompressible ideal fluid moving in a two-dimensional bounded domain, remain concentrated during the time. The motion of their centers converges to the solution of the point vortex model with the corresponding initial conditions.  相似文献   

19.
In this paper, we study the vortex patch problem in an ideal fluid in a planar bounded domain. By solving a certain minimization problem and studying the limiting behavior of the minimizer, we prove that for any harmonic function q corresponding to a nontrivial irrotational flow, there exists a family of steady vortex patches approaching the set of extreme points of q on the boundary of the domain. Furthermore, we show that each finite collection of strict extreme points of q corresponds to a family of steady multiple vortex patches approaching it.  相似文献   

20.
The “inviscid” nature of the asymmetry is demonstrated using the example of the separating unsteady flow of an ideal incompressible fluid around a cylinder which is expanding at a constant velocity, that is, a non-steady-state analogue of steady-state flow around a cone at an angle of attack. An asymmetric flow structure is realized for a symmetrical positioning of the points of separation of the vortex sheets. This is evidence of the secondary role of viscosity, which can manifest itself through an “inverse” effect on the position of the points of separation. New asymmetric solutions and processes by which they arise, which are different from the classical bifurcation of the symmetric solution, are found. Together with an investigation of stability, an analysis of the global pattern of “self-similar” streamlines is carried out in the selection of the “realizable” solutions. The global pattern must correspond to the scheme adopted when constructing the theoretical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号