首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carboxylic acids are known for their strong intermolecular associations. With chiral carboxylic acids, this behavior can be studied using vibrational circular dichroism (VCD). Tetrahydrofuran-2-carboxylic acid 1, a chiral building block for beta-lactam antibiotics, is studied by emphasizing the effect of the dimerization. Experimental results indicate that for solutions of 1 in CDCl3 and CS2, a complex equilibrium exists between the monomers and dimers. B3LYP/aug-cc-pVTZ calculations are performed on both monomer and dimer structures. To simulate IR and VCD spectra, populations for monomer and dimers were approximated using a semiquantitative model. A good agreement between experimental and simulated spectra is obtained by taking into account both the monomeric and the dimeric structures, weighted using the experimentally determined populations.  相似文献   

2.
FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole   总被引:1,自引:0,他引:1  
FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value.  相似文献   

3.
An FT-IR study of pyrrole self-association in CCl4 solutions was carried out. According to the IR measurements, pyrrole forms self-associated dimeric species via N-H?π hydrogen bonding. This was also confirmed by quantum chemical calculations for pyrrole monomer and dimer at B3LYP/6-31++G(d,p) level of theory. A T-shaped minimum was located on B3LYP/6-31++G(d,p) PES of pyrrole dimer characterized with a hydrogen bond of an N-H?π type, with centers-of-mass separation of monomeric units of 4.520 Å, H?π distance of 2.475 Å, the interplanar angle between the two monomeric units being 72.9°. The anharmonic vibrational frequency shift upon dimer formation calculated on the basis of 1D DFT vibrational potentials is in excellent agreement with the experimental data (84 vs. 87 cm−1). Harmonic vibrational analysis predicts somewhat smaller shift (68 cm−1). On the basis of NIR spectroscopic data, anharmonicity constants for the 2ν(N-H) and 2ν(N-H?π) vibrational transitions were calculated. The orientational dynamics of monomeric and self-associated pyrrole species was studied within the framework of the transition dipole moment time correlation function formalism. The period of essentially free rotation in the condensed phase reduces from 0.05 ps for the monomeric pyrrole to 0.02 ps for the proton-donor molecule within the dimer.  相似文献   

4.
Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO...HON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO...HN hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular NH...O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies (DeltaE(ZPE)(CP)I, II=-7.02, -6.34 kcal mol-1) being less stable than calculated structures III and IV (DeltaE(ZPE)(CP)III, IV=-9.50, -8.87 kcal mol-1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO...HON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA)2 dimers in the studied matrixes indicates that the formation of (AHA)2 is kinetically and not thermodynamically controlled.  相似文献   

5.
Computation of accurate intramolecular hydrogen-bonding energies for peptides is of great importance in understanding the conformational stabilities of peptides and developing a more accurate force field for proteins. We have proposed a method to determine the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies in glycine and alanine peptides. In this article, the method is further applied to evaluate the intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies in peptides. The optimal structures of the intramolecular 10-membered ring N-H...O=C hydrogen bonds in glycine and alanine tripetide molecules are obtained at the MP2 level with 6-31G(d), 6-31G(d,p), and 6-31+G(d,p) basis sets. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are then evaluated based on our method at the MP2/6-311++G(3df,2p) level with basis set superposition error correction. The intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies are calculated to be in the range of -6.84 to -7.66, -4.44 to -4.98, and -6.95 to -7.88 kcal/mol. The method is also applied to estimate the individual intermolecular hydrogen-bonding energies in the dimers of amino-acetaldehyde, 2-amino-acetamide, formamide, and oxalamide, each dimer having two identical intermolecular hydrogen bonds. According to our method, the individual intermolecular hydrogen-bonding energies in the four dimers are calculated to be -1.77, -1.67, -6.35, and -4.82 kcal/mol at the MP2/6-311++G(d,p) level, which are in good agreement with the values of -1.84, -1.72, -6.23, and -4.93 kcal/mol predicted by the supermolecular method.  相似文献   

6.
A computational study of the monomers and hydrogen-bonded dimers of 2-pyrrolidone was executed at different DFT levels and basis sets. The above dimeric complexes were treated theoretically to elucidate the nature of the intermolecular hydrogen bonds, geometry, thermodynamic parameters, interaction energies, and charge transfer. The processes of dimer formation from monomers and concerted reactions of double proton transfer were considered. The evolution of geometry, vibrational frequencies, charge distribution, and AIM properties in going from monomers to dimers was systematically followed. The solvent effects upon dimer formation were investigated in terms of the self-consistent reaction field (SCRF Onsager model). For the monomers and three dimers, vibrational frequencies were calculated and the changes in frequencies of the vibrations most sensitive to complexation were discussed. The orbital interactions were shown to lengthen the X-H (X = N, O) bond and lower its vibrational frequency (a red shift). To better understand the nature of the corresponding intermolecular interactions, we performed natural bond orbital (NBO) analysis. Topological analysis of electron density at bond critical points (BCP) was executed for complex molecules using the Bader's atoms in molecules (AIM) theory. The interaction energies were calculated, and the basis set superposition errors (BSSE) were estimated systematically. Satisfactory correlations between the structural parameters, interaction energies, and electron density characteristics at BCP were found.  相似文献   

7.
A theoretical model for vibrational interactions in the hydrogen bonds in molecular crystals with four molecules forming two centrosymmetric dimers in the unit cell is presented. The model takes into account anharmonic-type couplings between the high-frequency N-H(D) and the low-frequency N...O stretching vibrations in each hydrogen bond, resonance interactions (Davydov coupling) between equivalent hydrogen bonds in each dimer, resonance interdimer interactions within a unit cell, and Fermi resonance between the N-H(D) stretching fundamental and the first overtone of the N-H(D) in-plane bending vibrations. The vibrational Hamiltonian, selection rules, and expressions for the integral properties of an absorption spectrum are derived. The model is used for theoretical simulation of the NH stretching bands of 1-methylthymine and its ND derivative at 300 K. The effect of deuteration is successfully reproduced by our model. Infrared, far-infrared, Raman, and low-frequency Raman spectra of 1-methylthymine and its deuterated derivative have been measured. Experimental geometry and frequencies are compared with the results of density functional theory calculations performed at the B3LYP6-311++G**, B3LYP/cc-pVTZ, B3PW916-311++G**, and B3PW91/cc-pVTZ levels.  相似文献   

8.
Terahertz time-domain spectroscopy (THz-TDS) is used to study the intra- and intermolecular vibrational modes of aromatic carboxylic acids, for example, o-phthalic acid, benzoic acid, and salicylic acid, which form either intra- or intermolecular hydrogen bond(s) in different ways. Incorporating the target molecules in nano-sized spaces in mesoporous silicate (SBA-16) is found to be effective for the separate detection of intramolecular hydrogen bonding modes and intermolecular modes. The results are supported by an analysis of the differences in the peak shifts, which depend on temperature, caused by the different nature of the THz absorption. Raman spectra revealed that incorporating the molecules in the nano-sized pores of SBA-16 slightly changes the molecular structures. In the future, THz-TDS using nanoporous materials will be used to analyze the intra- and intermolecular vibrational modes of molecules with larger hydrogen bonding networks such as proteins or DNA.  相似文献   

9.
《Vibrational Spectroscopy》2007,43(2):302-308
Ab initio harmonic B3LYP/6-31G* derived force fields were used to perform normal mode analysis for the most stable monomers and dimmers of neat 2-methoxyethanol (ethyleneglycol methyl ether) and of 2-methoxyethanol/acrylamide solutions. An interpretation of the Raman spectra for the neat 2-methoxyethanol and its solutions with acrylamide were analysed and associated to the monomeric and dimeric species intermolecular interactions either in the neat compound or in the mixtures with acrylamide in terms of intra- and intermolecular hydrogen-bonded and steric effects.  相似文献   

10.
Multiple techniques have been used to delineate the self-assembly of a bis(pyrrole) Schiff base derivative (compound 4, C(16)H(14)N(4)), which forms an unusual dimer through complementary N-H...N=C hydrogen bonds between twisted, C2-symmetric monomer units. The asymmetric unit of the crystal structure comprises one and a half dimer units, with one dimer exhibiting approximate D2 point-group symmetry and the other exact D2 symmetry (space group C2/c). The dimers pack into columns whose axes are collinear with the a axis of the unit cell. The columns assemble into discrete layers with two distinct types of hydrogen-sized voids residing between the layers. Despite the promising architecture of the voids within the lattice of 4, the absence of genuine channels to interconnect the voids precludes the uptake of hydrogen gas, even at elevated pressures (10 bar). AM1 calculations of the structure of dimeric 4 indicate that self-recognition through hydrogen bonding depends primarily on favorable electrostatic interactions. The potential-energy surface for monomeric 4 mapped by counter-rotation of an adjacent pair of C=C-N=C torsion angles indicates that the X-ray structures of the four monomeric units are global minima with highly nonplanar conformations that are preorganized for self-recognition by hydrogen bonding. The in vacuo enthalpy of association for the dimer was calculated to be significantly exergonic (DeltaG(assoc)=-21.9 kJ mol(-1), 298 K) and in excellent agreement with that determined by 1H NMR spectroscopy in CDCl3 (DeltaG(assoc)=-16.6(4) kJ mol(-1), 298 K). Using population and bond order analyses, in conjunction with the conformation dependence of the frontier MO energies, we have been able to show that pi-electron delocalization is only marginally diminished in the nonplanar conformers of 4 and that the electronic structures of the constituent monomers of the dimer are well mixed.  相似文献   

11.
Theoretical calculations on the molecular geometry and the vibrational spectrum of 4-hydroxybenzoic acid were carried out by the Density Functional Theory (DFT/B3LYP) method. In addition, IR and Raman spectra of the 4-hydroxybenzoic acid in solid phase were newly recorded using them in conjunction the experimental and theoretical data (including SQM calculations), a vibrational analysis of this molecular specie was accomplished and a reassignment of the normal modes corresponding to some spectral bands was proposed. The geometries of monomers and dimers in gas phase were optimized using the DFT B3LYP method with the 6-31G*, D95** and 6-311++G** basis sets. Also, both the vibrational spectra recorded and the results of the theoretical calculations show the presence of one stable conformer for the 4-hydroxybenzoic acid cyclic dimer. The B3LYP/6-31G* method was used to study the structure for cyclic dimer of 4-hydroxybenzoic acid and for a complete assignment our results were compared with results of the cyclic dimer of benzoic acid. A scaled quantum mechanical analysis was carried out to yield the best set of harmonic force constants. The formation of the hydrogen bond was investigated in terms of the charge density by the AIM program and by the NBO calculations.  相似文献   

12.
Formation of intra- and intermolecular hydrogen bonds in 2-thiophen-3-ylmalonic acid, the precursor of a polythiophene derivative bearing two carboxylic acid groups in the side chain, have been examined by Fourier transform infrared (FTIR) spectroscopy and ab initio quantum mechanical calculations. Interactions found in the FTIR spectra recorded for the melted and solid states are in good agreement with results provided by MP2/6-31+G(d,p) calculations on monomers and dimers, respectively. Specifically, inter- and intramolecular hydrogen bonds were detected in the solid and melted states, respectively. Calculations on dimers stabilized by intermolecular hydrogen bonds exclusively and by both intra- and intermolecular interactions indicated that the former structures are significantly more stable than the latter ones, which is fully consistent with experimental observations. On the other hand, intramolecular interactions in isolated monomers are favored in the melted state, which is dominated by a thermally driven entropic process.  相似文献   

13.
Infrared spectroscopy (IR) of formyl fluoride (HCOF) dimer is studied in low-temperature argon and krypton matrixes. New IR absorptions, ca. 17 cm(-1) blue shifted from the monomer C-H stretching fundamental, are assigned to the HCOF dimer. The MP2/6-311++G calculations were utilized to define structures and harmonic frequencies of various HCOF dimers. Among the four optimized structures, the dimer having two C-H...O hydrogen bonds possesses strongest intermolecular bonding. The calculated harmonic frequencies of this dimer structure are shifted from the monomer similarly as observed in the experiment. Thus, we suggest that the experimentally observed blue shifted C-H bands belong to the dimer with two C-H...O hydrogen bonds. This observation includes the HCOF dimer to the class of hydrogen bonded complexes showing blue shift in their vibrational energies.  相似文献   

14.
B3LYP theoretical calculations with 6-31++G(d,p) basis set have been performed to study the infrared spectrum of maleimide and its dimer. Our calculations have shown that the dimer formation leads to a binding energy of 44.0kJmol(-1) involving two intermolecular hydrogen bonds between the amide hydrogen and a carbonyl group of two neighboring maleimides. This value is essentially due to the electrostatic interaction term. Our calculations have also revealed the vibrational changes, in terms of frequencies and IR intensities, after dimer formation. The most affected modes are associated with the NH stretching and in-plane bending bands. This behavior can be adequately interpreted by the hydrogen atomic charge and NH charge-flux based on the modified charge-charge flux-overlap model for infrared intensities. The B3LYP frequency shifts are in very good agreement with the experimental ones.  相似文献   

15.
FT Raman and IR spectra of the crystallized biologically active molecule, L-alanylglycine (L-Ala-Gly) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies of L-Ala-Gly have been investigated with the help of B3LYP density functional theory (DFT) method. The calculated molecular geometry has been compared with the experimental data. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The optimized geometry shows the non-planarity of the peptide group of the molecule. Potential energy surface (PES) scan studies has also been carried out by ab initio calculations with B3LYP/6-311+G** basis set. The red shifting of NH3+ stretching wavenumber indicates the formation of N-H...O hydrogen bonding. The change in electron density (ED) in the sigma* antibonding orbitals and E2 energies have been calculated by natural bond orbital analysis (NBO) using DFT method. The NBO analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule.  相似文献   

16.
The crystal and molecular structure of pyrrole-2-carboxamide (PyCa) determined by single crystal X-ray diffraction is presented. Molecular conformations of PyCa are also analyzed by FT-IR and NMR techniques. Additionally DFT calculations at the B3LYP/6-311++G(d,p) level of approximation are performed for dimers of PyCa and for related species. The existence of two tautomeric forms for the analyzed dimers differing in H-bond motifs, N-H...O or O-H...N, is studied. The geometrical and energetic features of such H-bonds show that these interactions may be classified as intermolecular resonance-assisted hydrogen bonds. Additionally the Bader theory is applied to determine and to analyze bond critical points.  相似文献   

17.
The structures and vibrational spectra of the intermolecular complexes formed by insertion of substituted formaldehyde molecules HRCO (R = H, Li, F, Cl) into cyclic hydrogen fluoride and water clusters are studied at the MP2/aug-cc-pVTZ computational level. Depending on the nature of the substituent R, the cluster type, and its size, the C-H stretching modes of HRCO undergo large blue and partly red shifts, whereas all the F-H and O-H stretching modes of the conventional hydrogen bonds are strongly red-shifted. It is shown that (i) the mechanism of blue shifting can be explained within the concept of the negative intramolecular coupling between C-H and C=O bonds that is inherent to the HRCO monomers, (ii) the blue shifts also occur even if no hydrogen bond is formed, and (iii) variation of the acceptor X or the strength of the C-H...X hydrogen bond may either amplify the blue shift or cause a transition from blue shift to red shift. These findings are illustrated by means of intra- and intermolecular scans of the potential energy surfaces. The performance of the negative intramolecular coupling between C-H and C=O bonds of H(2)CO is interpreted in terms of the NBO analysis of the isolated H(2)CO molecule and H(2)CO interacting with (H2O)n and (HF)n clusters.  相似文献   

18.
First-principle calculations are performed on the dimers of 2,6-diamino-3,5-dinitropyridine (ANPy) and its N-oxide (2,6-diamino-3,5-dinitropyridine-1-oxide, ANPyO). The dimers as well as the monomers are fully optimized by the DFT-B3LYP and HF methods in conjunction with 6-311G**, 6-311++G**, and cc-pVDZ basis sets. The N-O bond length of the pyridine N-oxide moiety decreases in the ANPyO dimer in the dimerization process, which results in a larger deformation energy of the ANPyO submolecule. This deformation prevents the submolecules from further close contact and the formation of strong H-bonds between the nitro and amino groups. The optimized intermolecular distances of the ANPyO dimer are in good agreement with the corresponding experimental values. There is a weak C-H...O hydrogen bond in the ANPyO dimer; the B3LYP method underestimates its binding energy. On the contrary, for the ANPy dimer, the binding energy obtained at the B3LYP level is larger than that obtained at the HF level. The individual O...H strength is stronger in the ANPy dimer than that in ANPyO, which is consistent with the O...H distance. The O...H-C type of the H-bond is stronger in the ANPyO dimer than the ordinary O...H-C bond due to the N-oxide oxygen atom bearing larger negative charges. The corrected binding energy for each hydrogen bond between nitro oxygen and amino hydrogen is about −5 kJ/mol in the ANPy dimer, which is stronger than that in the ANPyO dimer.  相似文献   

19.
The 1H and 13C NMR spectra of 2-(hydroxyimino)propanohydroxamic acid (hpha) were measured in DMSO-d6 solution. The set of several monomeric structures along with the cluster of H-bonded hpha with three DMSO molecules were proposed to fit the experimental data. The calculated chemical shifts [B3LYP/6-311++G(d,p)] strongly suggested the formation of the cluster in which all the labile protons were H-bonded to the solvent molecules. The comparison between experimental and calculated Raman spectra of hpha in DMSO also suggested that in these conditions the investigated compound forms the proposed cluster rather than dimers. According to our calculations [B3LYP/6-31+G(d)] this cluster was energetically stabilized (84-106 kJ mol-1) compared to postulated dimeric structures. On the other hand, formation of dimers was proposed to be present for hpha in solid state. The comparison of the vibrational data (IR, RS) with the computed harmonic frequencies of three most probable dimers [B3LYP/6-31+G(d)] suggested that the dimer in which molecules adopted the zEe-keto form and were linked by two symmetric, almost linear H-bonds between the carbonyl oxygen atoms and the hydroxamic O-H protons was the predominant species of hpha in the solid state. Thus, the structures of hpha in solid state and DMSO solution appeared to be different.  相似文献   

20.
In the present work, we have investigated the structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet by employing resonant two photon ionization (R2PI), IR-UV, and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. The R2PI spectrum of the dimer is recorded by electronic excitation of the 7-azaindole moiety, and a few low frequency intermolecular vibrations of the dimer are clearly observed in the spectrum. The electronic origin band of the dimer is red-shifted by 1278 cm(-1) from the S(1) ← S(0) origin band of 7-azaindole monomer. The presence of a single conformer of the dimer is confirmed by IR-UV and UV-UV hole-burning spectroscopic techniques. RIDIR (Resonant ion dip infrared) spectrum of the dimer shows a red-shift of 265 cm(-1) in the N-H stretching frequency with respect to that of the 7-azaindole monomer. Two planar double hydrogen bonded cyclic structures of the dimer have been predicted from DFT calculations. Comparison of experimental and theoretical N-H stretching frequencies confirms that the observed dimer is stabilized by N-H···N and C-H···N hydrogen bonding interactions. The less stable conformer with N-H···F and C-H···N interactions are not observed in the experiment. The competition between N-H···N and N-H···F interactions in the two dimeric structures are discussed from natural bond orbital (NBO) analysis. The current results demonstrate that fluorine makes a hydrogen bond of intermediate strength through cooperative interaction of another hydrogen bond (C-H···N) present in the dimer, although fluorine is believed to be very weak hydrogen bond acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号