首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase behavior is established for a block copolymer polyethyleneoxide-b-dimethylsiloxane-polyethylenoxide (EO)(15)-(PDMS)(15)-(EO)(15) (IM-22) a in glycerol/water mixed solvent. In water alone, the block copolymer forms biphasic micellar/lamellar (L(1)/L(alpha)) systems over the range 10-70 wt%, with single L(alpha)-phases between 70-90 wt%. Strong solvent effects on the phase behavior were noted. For example, using a mixed 60:40 vol% glycerol/water solvent, the single L(alpha)-phase region appears at much lower concentrations, only 20 wt% IM-22, as compared to the biphasic L(1)/L(alpha) system observed in water alone. This interesting observation of L(alpha)-phase swelling on addition of glycerol may be explained by a decrease in attraction between the bilayers, as it is also found that in this mixed glycerol/water solvent there is a close refractive index matching with IM-22. Rheological measurements show the L(alpha)-phases with added glycerol have low shear moduli. The influence of added ionic surfactant sodium dodecylsulfate (SDS) on these swollen IM-22 L(alpha)-phases was studied. Small-angle X-ray scattering (SAXS) indicated the interlamellar distance d remains essentially constant up to 3 mM SDS, and then decreases with increasing SDS content. This weak effect is consistent with the fact that the L(alpha)-phases are most swollen when the mixed solvent contains 60 vol% glycerol. The results suggest that glycerol/water solvent mixtures can be used to tune the refractive index of the background solvent, modifying DLVO-type interactions, and causing significant effects on the phase stability of simple block-copolymer systems.  相似文献   

2.
The phase behavior and formation of self-assemblies in the ternary water/fluorinated surfactant (C(8)F(17)EO(10))/hydrophobic fluorinated polymer (C(3)F(6)O)(n)COOH system and the application of those assemblies in the preparation of mesostructured silica have been investigated by means of phase study, small angle X-ray scattering, and rheology. Hexagonal (H(1)), bicontinuous cubic (V(1)) with Ia3d symmetry, and polymer rich lamellar (L(alpha)(')) are observed in the ternary diagram. C(8)F(17)EO(10) molecules are dissolved in polymer rich aggregates, whereas (C(3)F(6)O)(n)COOH molecules are practically insoluble in the surfactant lamellar phase due to packing restrictions. Hence, two types of lamellar phases exist: one with surfactant rich (L(alpha)) and the other with polymer rich (L(alpha)(')) in the water/C(8)F(17)EO(10)/(C(3)F(6)O)(n)COOH system. As suggested by rheological measurements, worm-like micelles are present in C(8)F(17)EO(10) aqueous solutions but a rod-sphere transition takes place by solubilization of (C(3)F(6)O)(n)COOH. C(8)F(17)EO(10) acts as a structure directing agent for the preparation of hexagonal mesoporous silica by the precipitation method. The addition of (C(3)F(6)O)(n)COOH induces the formation of larger but disordered pores.  相似文献   

3.
We have studied the structure and rheological behavior of viscoelastic wormlike micellar solutions in the mixed nonionic surfactants poly(oxyethylene) cholesteryl ether (ChEO15)-trioxyethylene monododecyl ether (C12EO3) and anionic sodium dodecyl sulfate (SDS)-C12EO3 using a series of glycerol/water and formamide/water mixed solvents. The obtained results are compared with those reported in pure water for the corresponding mixed surfactant systems. The zero-shear viscosity first sharply increases with C12EO3 addition and then decreases; i.e., there is a viscosity maximum. The intensity (viscosity) and position (C12EO3 fraction) of this maximum shift to lower values upon an increase in the ratio of glycerol in the glycerol/water mixed solvent, while the position of the maximum changes in an opposite way with increasing formamide. In the case of the SDS/C12EO3 system, zero-shear viscosity shows a decrease with an increase of temperature, but for the ChEO15/C12EO3 system, again, the zero-shear viscosity shows a maximum if plotted as a function of temperature, its position depending on the C12EO3 mixing fraction. In the studied nonionic systems, worm micelles seem to exist at low temperatures (down to 0 degrees C) and high glycerol concentrations (up to 50 wt %), which is interesting from the viewpoint of applications such as drag reduction fluids. Rheology results are supported by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) measurements on nonionic systems, which indicate micellar elongation upon addition of glycerol or increasing temperature and shortening upon addition of formamide. The results can be interpreted in terms of changes in the surface curvature of aggregates and lyophobicity.  相似文献   

4.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

5.
The phase behavior of the water/poly(oxyethylene)-poly(dimethylsiloxane) copolymer (Si25C3EO51.6)/pentaoxyethylene dodecyl ether (C12EO5) ternary system has been studied. Both the silicone copolymer and the surfactant have equal volumes of hydrophilic and lipophilic parts; i.e., these are balanced amphiphiles. Although only a lamellar phase is observed in water-Si25C3EO51.6 and water-C12EO5 binary systems, a variety of liquid crystalline phases, including normal micellar cubic (I1), hexagonal (H1), bicontinuous cubic (V1), lamellar (L(alpha)), reverse bicontinuous cubic (V2), and reverse hexagonal (H2), are observed in the copolymer-rich region of the ternary phase diagram. The small C12EO5 molecules dissolve at the hydrophobic interface in the thick bilayer of the Si25C3EO51.6 L(alpha) phase occupying a large area of the total interface of the aggregates and modulate the curvature of the aggregates. Hence a variety of self-assembled structures are observed. In contrast, Si25C3EO51.6 is not dissolved in the thin bilayer of the C12EO5 lamellar phase (L'(alpha)). Hence, the C12EO5 L'(alpha) phase coexists with copolymer-rich L(alpha) and H2 phases. Consequently, small surfactant molecules are dissolved in a large silicone copolymer aggregate to induce a change in layer curvature, but a large copolymer molecule is hard to incorporate with surfactant aggregates.  相似文献   

6.
The solubilization of triglycerides [1,2,3-tributanoylglycerol (TBG) and 1,2,3-trihexanoylglycerol (THG)] in water/octa(oxyethylene) dodecyl ether (C(12)EO(8)) systems has been investigated. Oil-induced changes in the structure of liquid crystals in water/C(12)EO(8) system have been studied by optical observation and small-angle X-ray scattering (SAXS) measurements. In the water/C(12)EO(8)/oil systems, solubilization of THG and TBG induces a transition between H(1) (hexagonal) and L(alpha) (lamellar) liquid crystals at high C(12)EO(8) concentrations, whereas at low surfactant concentrations a H(1)-I(1) (discontinuous micellar cubic phase) transition occurs. This anomalous behavior is attributed to the partitioning of solubilized oil in the micelles. At low surfactant concentrations THG is mainly solubilized into the hydrophobic cores of the surfactant micelles, indicating high swelling or low penetration tendency, resulting in a steep increase in the radius of the aggregates (r(H)), thereby inducing a rod-sphere transition. At high surfactant concentrations, THG is not mainly solubilized into the core but distributed between the palisade layer and the core of the aggregates. The TBG is considerably solubilized into the surfactant palisade layer, indicating a high penetration tendency, resulting in an increase in the effective cross-sectional area per surfactant molecule, a(s). The thermal stability of the I(1) phase increases with the solubilization of THG into the aggregate cores. The percentage deviation of the experimental interlayer spacings (P(d)) from complete swelling was also evaluated for different triglycerides in the H(1) and L(alpha) phases or different surfactant concentrations. It is found that the penetration tendency of triglycerides could be used as a tuning parameter for I(1) phase formation depending on the surfactant concentration and the molecular weight of the oil.  相似文献   

7.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

8.
The phase behavior and microstructure of surfactant systems containing a new alkanolamide-type foam booster, dodecanoyl N-methyl ethanolamide (NMEA-12), were investigated by means of phase study and small angle X-ray scattering. Different from other similar alkanolamides, NMEA-12 possesses a low melting point and forms a lyotropic liquid-crystalline phase (L(alpha) phase) at room temperature. This is attributed to the attached methyl group, which increases the fluidity of the molecule. In the SDS/NMEA-12/water system, hexagonal and lamellar (L(alpha)) liquid-crystalline phases are obtained at significantly low surfactant concentrations. The stability of these phases decreases when SDS is replaced with a nonionic surfactant (C12EO8). However, for both ionic and nonionic surfactants, the effective area per surfactant molecule at the interface shrinks upon addition of NMEA-12, indicating that the surfactant layer is getting more compact. The possible implications of these results on the potential applications of NMEA-12 as foam stabilizer are discussed.  相似文献   

9.
The impact of some model perfumes on surfactant self-assembly has been investigated, using small-angle neutron scattering. A range of different model perfumes, with differing degrees of hydrophilicity/hydrophobicity, have been explored, and in order of increasing hydrophobicity include phenyl ethanol (PE), rose oxide (RO), limonene (LM), linalool (LL), and dihydrogen mercenol (DHM). The effect of their solubilization on the nonionic surfactant micelles of dodecaethylene monododecyl ether (C12EO12) and on the mixed surfactant aggregates of C12EO12 and the cationic dialkyl chain surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) has been quantified. For PE and LL the effect of their solubilization on the micelle, mixed micelle/lamellar and lamellar regimes of the C12EO12/DHDAB mixtures, has also been determined. For the C12EO12 and mixed DHDAB/C12EO12 micelles PE is solubilized predominantly at the hydrophilic/hydrophobic interface, whereas the more hydrophobic perfumes, from RO to DHM, are solubilized predominantly in the hydrophobic core of the micelles. For the C12EO12 micelles, with increasing perfume concentration, the more hydrophobic perfumes (RO to DHM) promote micellar growth. Relatively modest growth is observed for RO and LM, whereas substantial growth is observed for LL and DHM. In contrast, for the addition of PE the C12EO12 micelles remain as relatively small globular micelles, with no significant growth. For the C12EO12/DHDAB mixed micelles, the pattern of behavior with the addition of perfume is broadly similar, except that the micellar growth with increasing perfume concentration for the more hydrophobic perfumes is less pronounced. In the Lbeta (Lv) region of the DHDAB-rich C12EO12/DHDAB phase diagram, the addition of PE results in a less structured (less rigid) lamellar phase, and ultimately a shift toward a structure more consistent with a sponge or bicontinuous phase. In the mixed L1/Lbeta region of the phase diagram PE induces a slight shift in the coexistence from Lbeta toward L1. The addition of LL to the Lbeta (Lv) region of the DHDAB-rich C12EO12/DHDAB phase diagram also results in a reduction in the lamellar structure (less rigid lamellae), and a shift toward a structure more consistent with a sponge or bicontinuous phase, or a coexisting phase of small vesicles. For the mixed L1/Lbeta region of the phase diagram LL induces a shift toward a greater L beta component.  相似文献   

10.
The dilute lamellar phase of the nonionic surfactant C 12EO 5 was doped with goethite (iron oxide) nanorods up to a fraction of 5 vol %. The interaction between the inclusions and the host phase was studied by polarized optical microscopy (with or without an applied magnetic field) and by small-angle X-ray scattering. We find that, when the orientation of the nanorods is modified using the magnetic field, the texture of the lamellar phase changes accordingly; one can thus induce a homeotropic-planar reorientation transition. On the other hand, the lamellar phase induces an attractive interaction between the nanorods. In more concentrated lamellar phases (under stronger confinement) the particles form aggregates. This behavior is not encountered for a similar system doped with spherical particles, emphasizing the role of particle shape in the interaction between doping particles and the host phase.  相似文献   

11.
We report here a pioneering study using quadrupolar splitting NMR to detect new phases and phase compositions in the quasi-ternary microemulsion system water-decane-C(10)E(4)/PEP5-PEO5. The striking observation is that at certain compositions the polymer is apparently no longer incorporated into the membranes of the lamellar phase due to space restrictions. The polymer therefore induces a phase separation into two different lamellar phases L(alpha)(1) and L(alpha)(2) such that it fits into L(alpha)(1) while the excess surfactant forms a polymer-free L(alpha)(2) phase.  相似文献   

12.
We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ~ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ~ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films.  相似文献   

13.
The mixed micellar system comprising the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-based triblock copolymer (EO)(20)(PO)(70)(EO)(20) (P123) and the anionic surfactant sodium dodecyl sulfate (SDS) has been investigated in aqueous media by small-angle neutron scattering (SANS) and viscosity measurements. The aggregation number of the copolymer in the micelles decreases upon addition of SDS, but a simultaneous enhancement in the degree of micellar hydration leads to a significant increase in the micellar volume fraction at a fixed copolymer concentration. This enhancement in the micellar hydration leads to a marked increase in the stability of the micellar gel phase until it is destroyed at very high SDS concentration. Mixed micellar systems with low and intermediate SDS concentrations form the micellar gel phase in much wider temperature and copolymer concentration ranges than the pure copolymer micellar solution. A comparison of the observed results with those for the copolymers (EO)(26)(PO)(40)(EO)(26) (P85) and (EO)(99)(PO)(70)(EO)(99) (F127) suggests that the composition of the copolymers plays a significant role in determining the influence of SDS on the gelation characteristics of the aqueous copolymer solutions. Copolymers with high PO/EO ratios show an enhancement in the stability of the gel phase, whereas copolymers with low PO/EO ratios show a deterioration of the same in the presence of SDS.  相似文献   

14.
Fast field cycling (1)H NMR relaxometry is applied to determine the dispersion of spin-lattice relaxation time T(1)(omega) of the glass former glycerol in broad temperature (75-360 K) and frequency (10 kHz-30 MHz) ranges. The relaxation data are analyzed in terms of a susceptibility chi(")(omega) proportional, variantomegaT(1)(omega), related to the second rank (l=2) molecular orientational correlation function. Broadband dielectric spectroscopic results suggest the validity of frequency temperature superposition above the glass transition temperature T(g). This allows to combine NMR data of different temperatures into a single master curve chi(")(omegatau(alpha)) that extends over 15 decades in reduced frequency omegatau(alpha), where tau(alpha) is the structural alpha-relaxation time. This master curve is compared with the corresponding ones from dielectric spectroscopy (l=1) and depolarized light scattering (l=2). At omegatau(alpha)<1, NMR susceptibility is significantly different from both the dielectric and light scattering results. At omegatau(alpha)>1, there rather appears a difference between the susceptibilities of rank l=1 and l=2. Specifically, at omegatau(alpha)>1, where the susceptibility is dominated by the so-called excess wing, the NMR and light scattering spectra (both l=2) rather coincide with each other and are about three times more intense than the dielectric (l=1) spectrum. This is explained by assuming that the high frequency dynamics correspond to only small-angle excursions. Below T(g), dielectric and NMR susceptibility compare well and exhibit an exponential temperature dependence.  相似文献   

15.
The phase behavior and self-assembled structures of perfluoroalkyl sulfonamide ethoxylate, C8F17SO2N(C3H7)(CH2CH2O)20H (abbreviated as C8F 17EO20), a nonionic fluorocarbon surfactant in an aqueous system, has been investigated by the small-angle X-ray scattering (SAXS) technique. The C8F17EO20 forms micelles and different liquid crystal phases depending on the temperature and composition. The fluorocarbon micellar structure induced by temperature or composition change and added fluorocarbon cosurfactant has been systematically studied. The SAXS data were analyzed by the indirect Fourier transformation (IFT) and the generalized indirect Fourier transformation (GIFT) depending on the volume fraction of the surfactant and complemented by plausible model calculations. The C8F17EO20 forms spherical type micelles above critical micelle concentration (cmc) in the dilute region. The micelle tends to grow with temperature; however, the growth is not significant on changing temperature from 15-75 degrees C, which is attributed to the higher clouding temperature of the surfactant (>100 degrees C). On the other hand, the micellar structure (shape and size) is apparently unaffected by composition (1-25 wt %) at 25 degrees C. Nevertheless, addition of fluorocarbon cosurfactant of structure C8F17SO2N(C3H7)(CH2CH2O)H (abbreviated as C8F17EO1) to the semidilute solution of C8F17EO20 (25 wt %) favors micellar growth, which finally leads to the formation of viscoelastic wormlike micelles, as confirmed by rheometry and supported by SAXS. The onset sphere-to-wormlike transition in the structure of micelles in the C8F17EO20/water/C8F17EO1 system is due to the fact that the C8F17EO1 tends to go to the surfactant palisade layer so that the critical packing parameter increases due to a decrease in the effective cross-sectional area of the headgroup. As a result, spherical micelles grow into a cylinder, which after a certain concentration entangle to form a rigid network structure of wormlike micelles.  相似文献   

16.
We report on a small-angle synchrotron X-ray diffraction study of dilauroylphosphatidylcholine (DLPC) liposomes aggregated with high molecular DNA in the presence of 1,4-butanediammonium-N,N'-dilauryl-N,N,N',N'-tetramethyl gemini surfactant cations (C12GS). The aggregates prepared at the DLPC/C12GS/DNA phosphate group=2:1:1.6 molar ratio in 0.0015 mol x l(-1) NaCl aqueous solution exhibit Bragg reflections due to lamellar lipid bilayer stacking and the Bragg reflection typical of one-dimensional DNA lattice with parallel strands intercalated between lipid bilayers. In this condensed fluid lamellar L(alpha)(c) phase, the interactions between DNA and charged bilayers damp the thermally induced bilayer undulations. The diffraction data obtained with the mixture of DLPC liposomes and DNA (at DNA phosphate group/DLPC=0.8:1 molar ratio) indicate a DNA-lipid interaction in the absence of C12GS.  相似文献   

17.
Recently, it has been well recognized that the modulation of electrostatic interactions due to surface charges can induce transitions between lamellar liquid-crystalline (L(α)) and inverse bicontinuous double-diamond cubic (Q(II)(D)) phases in biological lipids. To reveal their kinetic pathway and mechanism, we investigated the low pH-induced L(α) to Q(II)(D) phase transitions in 20%-dioleoylphosphatidylserine (DOPS)/80%-monoolein (MO) using time-resolved small-angle x-ray scattering and a rapid mixing method. At a final pH of 2.6-2.9, the L(α) phase was transformed completely into the hexagonal II (H(II)) phase within 2-10 s after mixing a low pH buffer with a suspension of multilamellar vesicles of 20%-DOPS∕80%-MO (the initial step). Subsequently, the H(II) phase slowly converted into the Q(II)(D) phase and completely disappeared within 15-30 min (the second step). The rate constants of the second step were obtained using the singular value decomposition analysis. On the basis of these data, we discuss the underlying mechanism of the kinetic pathway of the low pH-induced L(α) to Q(II)(D) phase transitions.  相似文献   

18.
We have investigated the effects of glycerol on the formation and rheological behavior of cubic phase (I(1)) and related O/I(1) gel emulsion in a water/C(12)EO(8)/dodecane system at 25 degrees C. The phase behavior of the water/C(12)EO(8)/dodecane system was studied by optical observation and structures of different liquid crystalline phases were identified by small-angle X-ray scattering (SAXS) techniques. Addition of dodecane (2 wt%) to aqueous solutions of C(12)EO(8) in a concentrated region (40 wt%) leads to the formation of the I(1) phase (which was absent without the addition of oil). The I(1) phase solubilized some amount of oil and at higher oil concentrations the I(1)+O phase was formed, allowing the preparation of O/I(1) gel emulsion. Rheological measurements have shown that the complex viscosity, |eta( *)|, of the I(1) phase is tremendously high ( approximately 10(7) Pas) and it increases with increasing oil concentration, attains a maximum value near the phase boundary, and then decreases drastically in the I(1)+O region. The increasing |eta( *)| or decreasing tandelta(G(')/G(')) can be ascribed with the interactions among the neighboring micelles. The decreasing trend of the |eta( *)| in the I(1)+O region is simply due to the low volume fraction of the I(1) phase. It has been shown that glycerol decreases the viscosity of the I(1) phase and related gel emulsion, which is due to the I(1)-hexagonal phase (H(1)) microstructural transition. Digital images show the physical appearance of the emulsion, which depends on the glycerol concentration changes from translucent to transparent.  相似文献   

19.
Spatially resolved small-angle neutron scattering, SANS, has been used to investigate the response of the mixed microstructure of the dialkyl chain cationic and nonionic surfactant mixtures of (2,3-diheptadecyl ester ethoxy-n-propyl-1), 1,1,1-trimethyl ammonium chloride/octadecyl monododecyl ether, DHTAC/C18EO10, and DHTAC/dodecyl monododecadecyl ether, Coco20, over the velocity flow pattern of a crossed-slot elongational flow cell. The two different surfactant mixtures have different relative amounts of lamellar and micellar components, and this results in some differences in the flow-induced response. For the DHTAC/C18EO10, which is predominantly in the form of lamellar fragments, a complex pattern of orientational ordering is observed which reflects the competition between or demixing of the two principal flow directions in the cell.  相似文献   

20.
The effect of gamma irradiation on the structure of ultra-high molecular weight poly(ethylene oxide) (UHMWPEO) has been investigated by small-angle x-ray scattering (SAXS). The pressed and irradiated polymer possesses quite strong diffuse scattering. That fact makes the direct determination of the main structural parameters very difficult. To solve the problem a modification of the standard evaluating methods is suggested. Thus, the separation of the porous scattering from that of structural formations of PEO becomes possible. The application of a collimation correction according to Schmidt's method enables to separate diffuse and discrete parts in the scattering. Dependences of the long period, the gyration radii, and the difference between densities of crystalline and amorphous phases on the irradiation dose show that the irradiation increases the density of amorphous areas. A packing of the lamellar aggregates and increase of the porous sizes are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号