首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new working molecule 2-bromo-1,1,1,2-tetrafluoroethane is reported for laser isotope separation of tritium. The multiphoton dissociation rate of CF3CTBrF is studied as a function of irradiation wavenumber, using a CO2 or NH3 laser. In a tightly focused irradiation geometry where the dissociation saturates both for CF3CTBrF and CF3CHBrF, their threshold fluences of dissociation and the geometrically biased selectivity are measured near the maximum of the dissociation rate of CF3CTBrF. When the irradiation geometry is optimized, a high selectivity exceeding 2700 is obtained.  相似文献   

2.
A theoretical analysis of and experimental observations on a parallel incident laser-induced deposition rate are reported. Our theory predicts that the maximum deposition rate depends on the photo-traveling length, the scattering cross section of the reactant gases and their partial pressure. This result is applied to SiO2 deposition using monosilane and nitrous oxide for reactant gases, and is compared with experimental results. We show that the deposition rate of SiO2 films as a function of the incident light power and the partial pressure of reactant gases predicted by the present theory well explains our experimental results. A supply-limitation phenomenon of the reactant gases and a method of estimating deposition efficiencies are also discussed.  相似文献   

3.
The performance of a continuous-wave (cw) CO flame chemical laser (FCL) of the CS2/O2/CO2 type is presented. The laser gives up to 0.7 W cw output power on a number ofP v (J) lines corresponding to 1110, ..., 76 vibrational bands of CO molecule. The measured values of chemical efficiency based on the reaction O+CSCO*(v)+S and the specific power are 0.1% and 0.7J/g, respectively. The spectral composition of the CO FCL of the CS2/O2/CO2 type shows lasing in the region from 5.194 to 5.573 m. All experimental measurements are conducted with a nondispersive optical cavity.  相似文献   

4.
Films of polyethylene terephthalate (PET) can be successfully etched with 9 m radiation from a pulsed TEA CO2 laser. The relationship between etch depth and fluence is broadly similar to that observed for excimer laser etching but with a less well-defined threshold. Time-resolved photoacoustic measurements of stress waves generated in the interaction show that at a fluence of 1.8 J cm–2 ablation occurs 100–200 ns after the start of the laser pulse, a time which is consistent with the rate of thermal decomposition of PET. The volatile products of ablation are carbon monoxide, carbon dioxide, methane, ethyne, ethene, benzene, ethanal, and small quantities of other products. For fluences close to and appreciably above the threshold the ablated material consists predominantly of involatile species of relatively high molecular weight, whereas at higher fluences substantial fragmentation of the polymer to small molecules occurs.School of Chemistry  相似文献   

5.
Ignition energies for short duration (<50 ns) spark discharges were measured for undiluted and nitrogen-diluted H2-N2O mixtures of equivalence ratios ? = 0.15 and 0.2, dilution of 0% and 20% N2, and initial pressures of 15–25 kPa. The ignition events were analyzed using statistical tools and the probability of ignition versus spark energy density (spark energy divided by the spark length) was obtained. The simple cylindrical ignition kernel model was compared against the results from the present study. Initial pressure has a significant effect on the width of the probability distribution, ranging from a broad (P = 15 kPa) to a narrow (P = 25 kPa) probability distribution indicating that the statistical variation of median spark energy density increases as initial pressure of the mixture decreases. A change in the equivalence ratio from 0.15 to 0.2 had a small effect on the median spark energy density. The addition of 20% N2 dilution caused a significant increase in the median spark energy density when compared to no dilution. The extrapolation of the present results to atmospheric pressure, stoichiometric H2-N2O indicates that the electrostatic discharge ignition hazards are comparable to or greater than H2-O2 mixtures.  相似文献   

6.
We observed self-focusing and self-defocusing of a TEA CO2 laser pulse in CDF3 vapor under different conditions. The experimental parameters we varied are the pressure inside the interaction cell, the frequency of the laser, the energy and the temporal length of the pulse. We have shown that it is possible to pass from self-focusing to self-defocusing by only increasing the intensity of the laser pulse. We propose a physical model that can explain these experimental results. This model is different from that used to explain the selffocusing of a CO2 laser in SF6.  相似文献   

7.
A new approach to laser isotope separation is considered. It is based on collisionless multiple photon ir laser excitation and subsequent uv laser dissociation of vibrationally excited molecules. TEA CO2 and excimer XeF, XeCl lasers are used for ir excitation and uv dissociation, respectively. The products of photolysis (C2F6) are enriched with12C.  相似文献   

8.
Chemical reactions induced by CO2-laser radiation in mixtures of silane and hexafluoroacetone afford various gaseous silicon- and carbon-containing compounds and result in deposition of microstructures of carbon, C/F/O and Si/C/O/F materials. These products are suggested to be formed by a variety of exothermic reactions initiated through SiH4-photosensitized decomposition of hexafluoroacetone. Silane is shown to be a very potent reagent for the reduction of C-F bonds.  相似文献   

9.
Several monoatomic and homonuclear diatomic gases absorb energy from a focused CO2-laser photon field. It has been established that the pressure threshold for the energy absorption correlates qualitatively with the known ionization potentials of those gases. The simplified phenomenological theory of the CO2-laser-induced dielectric breakdown of gases is invoked to explain this phenomenon. In the H2–D2 system, the formation of HD is observed under these conditions. The examination of the reaction yields for HD formation demonstrates that the system studied does not reach equilibrium under our experimental conditions. Considerations regarding kinetics of primary processes reveal that ionic species, created originally via an inverse bremsstrahlung mechanism, are converted into atomic transients in fast ionic association processes. The latter species initiate chain reactions with surrounding molecules of substrates leading to the formation of HD. Simple kinetic analysis based on a non-steady-state assumption permitted the derivation of an expression for the yield of HD formation. This equation was fitted to the experimental data assuming that the temperature of the reaction rises with an increase of the amount of D2 in the mixture. Some other aspects regarding the behavior of this system in a focused CO2 laser beam are also discussed.U.S. Department of Energy Document No. DE-AS02-76ER03416-37  相似文献   

10.
Isotope separation of tritium by CO2 laser-induced multiphoton dissociation (MPD) of C2TF5 is reported for the first time. The MPD spectrum obtained for C2TF5 comprised a broad peak at about 940 cm–1 where C2HF5 was nearly transparent. The unimolecular dissociation of C2TF5 was induced with much lower laser fluence than that for CTF3, another working molecule we proposed for laser isotope separation of tritium. The mechanisms and kinetics of the dissociation of C2TF5 and C2HF5 were investigated under various experimental conditions: laser frequency, pulse energy, pulse duration, tritium concentration, sample pressure, buffer gas pressure and irradiation geometry. Single-step separation factors exceeding 500 were achieved with the most efficientP(20) line in 00o–10o0 transition at 944.2 cm–1.  相似文献   

11.
Difluoromethane CH2F2 containing 90–98% 13C was obtained in the selective IRMPD of mixtures of CBr2F2/HI, CCl2F2/HI, and CBrClF2/HI. In CBr2F2/HI mixtures, the intermediate product CHBrF2 resulting from the reaction between the initial decomposition fragment CBrF2 and HI underwent secondary selective IRMPD to form highly 13C-enriched CH2F2 in continuous laser irradiation. The intermediate product in the mixtures of CCl2F2/HI and CBrClF2/HI was found to be CHClF2, but no significant secondary photodecomposition in CBrClF2/HI mixtures occurred owing to the low absorption cross section of CHClF2 at the adopted laser frequencies and fluences. The observed decomposition probabilities and selectivities under different conditions with respect to laser frequency, fluence, and partial pressures of halogenated difluoromethanes and HI suggest that CBr2F2 is one of the better candidates for practical 13C separation by IRMPD.  相似文献   

12.
Tritium isotope separation by CO2-laser induced multiphoton dissociation of CTF3 is investigated. For the optimization of the performance of this working substance, trifluoromethane, the conditions to yield high-selectivity at high-operating pressure and low-critical fluence for complete dissociation are studied using our deconvolution procedure. The irradiation conditions are varied over the following ranges; wavenumber: 1052–1087 cm–1, gas temperature: 25°C to –78°C, CHF3 pressure: 5–205 Torr. The selectivities exceeding 104 are observed for 85–205 Torr CHF3 at –78°C by the irradiation at 1057 cm–1.  相似文献   

13.
Ablation of polyetheretherketone (PEEK), a high temperature thermoplastic, by XeCl laser radiation occurs at fluences in excess of 0.07±0.01 J cm–2. The volatile products of ablation are CO and C2H2 with smaller quantities of CH4, C4H2, C6H6 and other C3 and C4 hydrocarbons. At fluences close to the threshold ablation produces involatile material of relatively high molecular weight but at high fluences extensive disruption of the PEEK structure occurs with conversion of all of the oxygen in the polymer to carbon monoxide.  相似文献   

14.
Trimethylamine and triethylamine are shown to luminesce at their wavelengths of fluorescence when excited by electrical discharge. When excited at low pressures or at high frequencies, a longer wavelength emission is observed at 380 nm. This emission, rather than being due to excimers which are known to exist for some tertiary aliphatic amines, is shown to be due to emission from a decomposition product. Lasing using electrical discharge pumping was attempted, but yielded negative results due to the rapid decomposition. Optical pumping might be successful however, and produce a tunable gas-phase ultraviolet laser  相似文献   

15.
Experimental investigations of multiphoton selective dissociation of (CH3)2O induced by a pulsed CO2 laser have been conducted. Separation of H, C, and O isotopes was performed in enriched mixtures and in samples with the natural abundance. The following coefficients of selectivity have been obtained:K D/KH=4.0,K 13/K12=1.7, andK 18/K16≧1.6. We studied the dependences of the selectivity coefficient on ether pressure, on the laser energy and frequency as well as the influence of secondary chemical reactions on the dissociation selectivity. Estimations made by using the RRKM theory have indicated that ether molecules that decompose have an average excitation energy above the dissociation threshold of ∼1.5 kcal/mole.  相似文献   

16.
Polyethylene terephthalate (PET) films preheated with a pulsed CO2 laser have been ablatively etched with an XeCl laser. The observed reduction in ablation threshold, from 170 to 140 mJ cm–2, is consistent with a thermal mechanism for XeCl laser ablation of PET. Transient changes in the UV absorption coefficient of PET caused by heating with pulsed CO2 laser radiation have also been studied and a significant increase in absorption observed at 308 nm. Permanent changes in the ultraviolet absorption of PET following exposure to low fluence XeCl laser radiation are also reported.  相似文献   

17.
The 13C-selective infrared multiple-photon decomposition (IRMPD) of mixtures of CHClF2 and HI was examined in collimated and focused beam geometries using a CO2TEA laser. The carbon-containing products were CH2F2 and CHF2I. The former product showed remarkably high 13C atom concentrations beyond 95% under selected experimental conditions, while the latter contained 25% or less. The observed results can be explained satisfactorily in terms of the consecutive two-stage IRMPD process occurring in a single irradiation procedure, where the first-stage IRMPD of natural CHClF2 produces 13C-enriched CHF2I via the insertion of the initial decomposition fragment CF2 into HI, and the second stage is the subsequent 13C-selective IRMPD of the CHF2I to form a CHF2 radical and an I atom. The CHF2 radical reacts with HI to form CH2F2. Decomposition probabilities of 12CHClF2 and 13CHClF2 were measured as a function of laser fluence to optimize enrichment conditions. Furthermore, partial decomposition probabilities or relative production yields were measured as functions of laser line, pressure of HI, and pressure of CHClF2. Both stages showed high 13C selectivities in the irradiation with the laser radiation around 1040 cm–1 and at fluences below 4 J cm–2. This mixture is one of the most promising chemical systems for the production of highly enriched 13C.  相似文献   

18.
Ablation of organic polymers is described on the basis of photothermal bond breaking within the bulk material. Here, we assume a first-order chemical reaction, which can be described by an Arrhenius law. Ablation starts when the density of broken bonds at the surface reaches a certain critical value. In order to understand the ablation behavior near the threshold fluence, φth, non-stationary regimes must be considered. The present treatment reveals several qualitative differences with respect to models that treat ablation as a surface process: (i) Ablation starts sharply with a front velocity that has its maximum value just after the onset. (ii) The transition to the quasi-stationary ablation regime is faster. (iii) Near threshold, the ablated depth h has a square-root dependence on laser fluence, i.e., h∝(φ-φth)1/2. The ablation velocity is very high even near φth. (iv) With φ≈φth ablation starts well after the laser pulse. (v) The depletion of species is responsible for the Arrhenius tail observed with fluences φ≤φth. (vi) Residual modification of material has maximum near the threshold. (vii) Stationary regimes of ablation demonstrate change of effective activation energy with laser intensity. The model calculations are applied to Polyimide (KaptonTM H). Here, differences in single-pulse ablated depth determined from mass loss and profilometry should be about 10 nm. Received: 16 February 1999 / Accepted: 18 February 1999 / Published online: 28 April 1999  相似文献   

19.
2 laser radiation in the gas phase results in the deposition of carbonaceous films composed of a graphitic and monohydrogenated carbon, in which H is dominantly bonded to sp3 sites. The films incorporate oxygen in the topmost layers. The technique is suitable for the preparation of thin C-based films at low substrate temperatures. Received: 23 July 1997/Accepted: 18 November 1997  相似文献   

20.
We have been studying the practical CO2-laser-induced13C separation by a two-stage IRMPD process. The IRMPD of natural CHClF2 in the presence of Br2 mainly produced CBr2F2, which was found to be highly enriched with13C. The yield and13C-atom fraction of CBr2F2 were examined as functions of pulse number, laser line, laser fluence, total pressure, and Br2 pressure using a CO2 TEA laser with an output less than 1 J pulse–1 in order to optimize experimental conditions for13C separation. For example, we obtained CBr2F2 at a13C concentration of 55% in the irradiation of the mixture of 100-Torr CHClF2 and 10-Torr Br2 with the laser radiation at a wavenumber of 1045.02 cm–1 and at a fluence of 3.4 J cm–2. The mechanism for the IRMPD is discussed on the basis of observed results. Using 8-J pulses, we were able to obtain 1.9×10–4 g of13C-enriched CBr2F2 (13C-atom fraction, 47%) per pulse under selected conditions. It is possible to produce 90% or higher13C by the second-stage IRMPD of the CBr2F2 in the presence of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号