首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assignment of the SiOH group vibrations of trimethylsilanol, which is still controversial, is proposed. This assignment is based on theoretical B3LYP force field scaled using the constants of the (CH3)3Si group optimized to fit experimental vibrational frequencies of (CH3)3SiF and (CD3)3SiF molecules as well as the OH stretching scale factor from methanol. The ab initio force field defined in this way gives a good agreement of the theoretical vibrational frequencies of trimethylsilanol with the positions of IR and Raman bands observed in the gas phase. This force field predicts the greatest contribution of the delta SiOH coordinates to the vibration with frequency of 804 cm(-1). The elimination of the coupling of the SiOH deformation with methyl rocking modes by the normal coordinate treatment of (CD3)3SiOH gives 832 cm(-1) for silanol deformation which is in a good agreement with the 834 cm(-1) value proposed earlier for the bending mode of free silanol groups. The geometry and force field of the open chain H3SiOH trimer is computed to model the change of the delta SiOH frequencies upon formation of the hydrogen-bonded polymers. This model predicts a significant shift of SiOH bending frequencies to the 1000-1200 cm(-1) range while those of SiOD to the 800-850 cm(-1) range. These predictions allow us to ascribe the 1087 cm(-1) band observed in the IR spectrum of crystalline (CH3)3SiOH and the Raman 775 cm(-1) band of the liquid (CH3)3SiOD to deformations of the hydrogen-bonded silanol groups.  相似文献   

2.
Infrared absorption spectra of gaseous CH2Cl2 in the regions of 1200-12000 cm-1 were measured using a Bruker IFS 120HR Fourier transform spectrometer in conjunction with a multipass cell. 47 vibrational levels of overtone and combinational spectral lines of the CH stretching (v1, v6), bending (v2), and rocking(v8) modes were analyzed and assigned. Utilizing the normal mode model and considering the coupling among CH stretching, bending and rocking vibrations, values of the harmonic frequency ωi, the anharmonic constant xij, and the coefficients of Fermi and the Darling-Dennison resonances of v1, v6, v2 and v8 modes were also determined from experimental spectral data with nonlinear least-square fitting. These spectral constants reproduced the experimental levels very well. These results showed that Fermi resonance between CH stretching and rocking vibrations (ki88=-254.63 cm-1) is stronger than that between CH stretching and bending vibrations (k122 = 54.87 cm-1); and that Darling-Dennison resonances between CH stretching and bending vibrations (k1166=-215.28 cm-1) is also much stronger than that between CH bending and rocking vibrations (k2288=-5.72 cm-1).  相似文献   

3.
The FTIR spectra of pure magnesium-rich (Mg-rich) and magnesium-poor (Mg-poor) palygorskites, before and after short-term (<7 h) and long-term (360 h) acid leaching are presented here. Comparison of decomposition spectra of Mg-rich and Mg-poor palygorskites clearly shows that the absorption peaks related to pairs of octahedral cation differ depending on the octahedral site occupancy. Short-term acid leaching of palygorskites results in significant changes to FTIR absorption bands near 1200 and 790 cm-1. As the acid attack progresses, the band at 1200 cm-1 shifts to lower wavenumbers, whilst the band at 790 cm-1, which here is assigned to SiU-O-SiD symmetrical stretching vibration, shifts to higher wavelengths. Longer-term leaching of palygorskites results in the disappearance of 900-1200 cm-1 absorption bands, showing that the palygorskite has largely decomposed to amorphous silica. Assignments of several other bands have been made as follows: several vibrations relate to OH, i.e. 847 cm-1, hygroscopic water (1635 cm-1), Si-O vibrations 1100, 611-621, 470-481 cm-1, etc. appear in the FTIR spectra of 360 h acid leached palygorskite. Three bands near 1100, 611-621 and 470-481 cm-1 relate to Si-O vibration of an ideal hexagonal (Si2O5)n sheet.  相似文献   

4.
Experimental vibrational spectra of heavy light XH stretching vibrations of simple molecules have been analyzed using the local mode model. In addition, the bond dipole approach, which assumes that the transition dipole moment (TDM) of the XH stretching mode is aligned along the XH bond, has helped analyze experimental spectra. We performed theoretical calculations of the XH stretching vibrations of HOD, HND\begin{document}$^-$\end{document}, HCD, HSD, HPD\begin{document}$^-$\end{document}, and HSiD using local mode model and multi-dimensional normal modes. We found that consistent with previous notions, a localized 1D picture to treat the XH stretching vibration is valid even for analyzing the TDM tilt angle. In addition, while the TDM of the OH stretching fundamental transition tilted away from the OH bond in the direction away from the OD bond, that for the XH stretching fundamental of HSD, HND\begin{document}$^-$\end{document}, HPD\begin{document}$^-$\end{document}, HCD, and HSiD tilted away from the OH bond but toward the OD bond. This shows that bond dipole approximation may not be a good approximation for the present systems and that the heavy atom X can affect the transition dipole moment direction. The variation of the dipole moment was analyzed using the atoms-in-molecule method.  相似文献   

5.
Reactions of laser-ablated Th atoms with H2O during condensation in excess argon have formed a variety of intriguing new Th, H, O species. Infrared absorptions at 1406.0 and 842.6 cm-1 are assigned to the H-Th and Th=O stretching vibrations of HThO. Absorptions at 1397.2, 1352.4, and 822.8 cm-1 are assigned to symmetric H-Th-H, antisymmetric H-Th-H, and Th=O stretching vibrations of the major primary reaction product H2ThO. Thorium monoxide (ThO) produced in the reaction inserts into H2O to form HThO(OH), which absorbs at 1341.0, 804.0, and 542.6 cm-1. Both HThO(OH) and ThO2 add another H2O molecule to give HTh(OH)3 and OTh(OH)2, respectively. Weaker thorium hydride (ThH1(-4)) absorptions were also observed. Relativistic DFT and ab initio calculations were performed on all proposed molecules and other possible isomers. The good agreement between experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts provides support for these first identifications of Th, H, O molecular species.  相似文献   

6.
The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C (L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d,p) calculations and DFT (BLYP) calculations with 6-31G(d,p) and 6-31++G(d,p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm(-1). The magnitude of the wavenumber shifts is indicative of relatively strong OH...H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric OH stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.  相似文献   

7.
Minerals in the rosasite group namely rosasite, glaucosphaerite, kolwezite, mcguinnessite have been studied by a combination of infrared and Raman spectroscopy. The spectral patterns for the minerals rosasite, glaucosphaerite, kolwezite and mcguinnessite are similar to that of malachite implying the molecular structure is similar to malachite. A comparison is made with the spectrum of malachite. The rosasite mineral group is characterised by two OH stretching vibrations at approximately 3401 and 3311 cm-1. Two intense bands observed at approximately 1096 and 1046 cm-1 are assigned to nu1(CO3)2- symmetric stretching vibration and the delta OH deformation mode. Multiple bands are found in the 800-900 and 650-750 cm-1 regions attributed to the nu2 and nu4 bending modes confirming the symmetry reduction of the carbonate anion in the rosasite mineral group as C2v or Cs. A band at approximately 560 cm-1 is assigned to a CuO stretching mode.  相似文献   

8.
Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)·2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H?O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases.  相似文献   

9.
Raman spectroscopy at 298 and 77 K of bergenite has been used to characterise this uranyl phosphate mineral. Bands at 995, 971 and 961 cm-1 (298 K) and 1006, 996, 971, 960 and 948 cm-1 (77K) are assigned to the nu1(PO4)3- symmetric stretching vibration. Three bands at 1059, 1107 and 1152 cm-1 (298 K) and 1061, 1114 and 1164 cm-1 (77 K) are attributed to the nu3(PO4)3- antisymmetric stretching vibrations. Two bands at 810 and 798 cm-1 (298 K) and 812 and 800 cm-1 (77 K) are attributed to the nu1 symmetric stretching vibration of the (UO2)2+ units. Bands at 860 cm-1 (298 K) and 866 cm-1 (77 K) are assigned to the nu3 antisymmetric stretching vibrations of the (UO2)2+ units. UO bond lengths in uranyls, calculated using the wavenumbers of the nu1 and nu3(UO2)2+ vibrations with empirical relations by Bartlett and Cooney, are in agreement with the X-ray single crystal structure data. Bands at (444, 432, 408 cm-1) (298 K), and (446, 434, 410 and 393 cm-1) (77 K) are assigned to the split doubly degenerate nu2(PO4)3- in-plane bending vibrations. The band at 547 cm-1 (298 K) and 549 cm-1 (77 K) are attributed to the nu4(PO4)3- out-of-plane bending vibrations. Raman bands at 3607, 3459, 3295 and 2944 cm-1 are attributed to water stretching vibrations and enable the calculation of hydrogen bond distances of >3.2, 2.847, 2.740 and 2.637 A. These bands prove the presence of structurally nonequivalent hydrogen bonded water molecules in the structure of bergenite.  相似文献   

10.
Molecular and vibrational structure of 1,1,1,6,6,6-hexafluoropentane-2,4-dione (hexafluoro-acetylacetone) have been investigated by means of density functional theory (DFT) calculations and have been compared with those of acetylacetone, the parent molecule. According to the theoretical calculations HFAA has an asymmetric structure with hydrogen bond strength of about 12 kcal mol(-1), about 6 kcal mol(-1) less than that of acetylacetone. This weakening of hydrogen bond is consistent with frequency shifts for OH/OD stretching, OH/OD out of plane bending and O...O stretching modes upon substitution of methyl hydrogen atoms with fluorine atoms. The symmetric structure based on electron diffraction data is interpreted as superposition of two asymmetric structures.  相似文献   

11.
The mineral giniite has been synthesised and characterised by XRD, SEM and Raman and infrared spectroscopy. SEM images of the olive-green giniite display a very unusual image of pseudo-spheres with roughened surfaces of around 1-10microm in size. The face to face contact of the spheres suggests that the spheres are colloidal and carry a surface charge. Raman spectroscopy proves the (PO4)3- units are reduced in symmetry and in all probability more than one type of phosphate unit is found in the structure. Raman bands at 77K are observed at 3380 and 3186cm-1 with an additional sharp band at 3100cm-1. The first two bands are assigned to water stretching vibrations and the latter to an OH stretching band. Intense Raman bands observed at 396, 346 and 234cm-1are attributed to the FeO stretching vibrations. The giniite phosphate units are characterised by two Raman bands at 1023 and 948cm-1 assigned to symmetric stretching mode of the (PO4)3- units. A complex band is observed at 460.5cm-1 with additional components at 486.8 and 445.7cm-1 attributed to the nu(2) bending modes suggesting a reduction of symmetry of the (PO4)3- units.  相似文献   

12.
Raman and infrared spectra of the uranyl oxyhydroxide hydrate: curite is reported. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U–OH bending vibrations, H2O and (OH) stretching, bending and librational modes. U–O bond lengths in uranyls and O–H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. These bond lengths are close to the values inferred and/or predicted from the X-ray single crystal structure. The complex hydrogen-bonding network arrangement was proved in the structures of the curite minerals. This hydrogen bonding contributes to the stability of these uranyl minerals.  相似文献   

13.
Vibrational relaxation dynamics of monomeric water molecule dissolved in d-chloroform solution were revisited using the two dimensional Infrared (2D IR) spectroscopy. The vibrational lifetime of OH bending in monomeric water shows a bi-exponential decay. The fast component (T1=(1.2±0.1) ps) is caused by the rapid population equilibration between the vibrational modes of the monomeric water molecule. The slow component (T2=(26.4±0.2) ps) is mainly caused by the vibrational population decay of OH bending mode. The reorientation of the OH bending in monomeric water is determined with a time constant of τ=(1.2±0.1) ps which is much faster than the rotational dynamics of water molecules in the bulk solution. Furthermore, we are able to reveal the direct vibrational energy transfer from OH stretching to OH bending in monomeric water dissolved in d-chloroform for the first time. The vibrational coupling and relative orientation of transition dipole moment between OH bending and stretching that effect their intra-molecular vibrational energy transfer rates are discussed in detail.  相似文献   

14.
The near infrared spectra (3800-10 500 cm(-1) of phenol-OH and phenol-OD are studied in carbon tetrachloride solution. The bandwidth of the v(OH) and v(OD) stretching vibrations increases with the vibrational quantum number in contrast to results obtained by nonresonant ionization spectroscopy (S.I. Ishiuchi et al., Chem. Phys. Lett. 283 (1998) 243). The bandwidth of the v(CH) vibrations obtained by a deconvolution procedure also increases with the frequencies associated with the vibrational transitions. The anharmonicity of the v(CH) vibrations ranges between 51 and 72 cm(-1). Numerous absorptions are observed in the near infrared spectra. These absorptions are tentatively assigned to combinations involving the fundamental transitions which have been recently calculated at different levels of theory (D. Michalska et al., J. Phys. Chem. 100 (1996) 17786). The experimental, theoretical and harmonic v(OH) and vi(CH) frequencies are compared.  相似文献   

15.
Near-infrared (NIR) spectroscopy has been used to analyse a suite of synthesised jarosites of formula Mn(Fe3+)6(SO4)4(OH)12 where M is K, Na, Ag, Pb, NH4+ and H3O+. Whilst the spectra of the jarosites show a common pattern, differences in the spectra are observed which enable the minerals to be distinguished. The NIR bands in the 6300-7000 cm-1 region are attributed to the first fundamental overtone of the infrared and Raman hydroxyl stretching vibrations. The NIR spectrum of the ammonium-jarosite shows additional bands at 6460 and 6143 cm-1, attributed to the first fundamental overtones of NH stretching vibrations. A set of bands are observed in the 4700-5500 cm-1 region which are assigned to combination bands of the hydroxyl stretching and deformation vibrations. The ammonium-jarosite shows additional bands at 4730 and 4621 cm-1, attributed to the combination of NH stretching and bending vibrations. NIR spectroscopy has the ability to distinguish between the jarosite minerals even when the formula of the minerals is closely related. The NIR spectroscopic technique has great potential as a mineral exploratory tool on planets and in particular Mars.  相似文献   

16.
The hydrogen-bonded clusters of 2-fluoropyridine with water were studied experimentally in a supersonic free jet and analyzed with molecular orbital calculations. The IR spectra of 2-fluoropyridine-(H2O)(n) (n = 1 to 3) clusters were observed with a fluorescence detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The frequencies of OH stretching vibrations show that water molecules bond to the nitrogen atom of 2-fluoropyridine in the clusters. The hydrogen-bond formation between aromatic CH and O was evidenced in the 1:2 and 1:3 clusters from the experimental and calculated results. The overtone vibrations of the OH bending mode in hydrogen-bonded water molecules appear in the IR spectra, and these frequencies become higher with the increase of the number of water molecules in the clusters. The band structure of the IR spectra in the CH stretching region changes depending on the number of coordinating water molecules.  相似文献   

17.
The mineral peisleyite has been studied using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscope (SEM) photomicrographs reveal that the peisleyite morphology consists of an array of small needle-like crystals of around 1 microm in length with a thickness of less than 0.1 microm. Raman spectroscopy in the hydroxyl stretching region shows an intense band at 3506 cm(-1) assigned to the symmetric stretching mode of the OH units. Four bands are observed at 3564, 3404, 3250 and 3135 cm(-1) in the infrared spectrum. These wavenumbers enable an estimation of the hydrogen bond distances 3.052(5), 2.801(0), 2.705(6) and 2.683(6)A. Two intense Raman bands are observed at 1023 and 989 cm(-1) and are assigned to the SO(4) and PO(4) symmetric stretching modes. Other bands are observed at 1356, 1252, 1235, 1152, 1128, 1098 and 1067 cm(-1). The bands at 1067 cm(-1) is attributed to AlOH deformation vibrations. Bands in the low wavenumber region are assigned to the nu(4) and nu(2) out of plane bending modes of the SO(4) and PO(4) units. Raman spectroscopy is a useful tool in determining the vibrational spectroscopy of mixed hydrated multianion minerals such as peisleyite. Information on such a mineral would be difficult to obtain by other means.  相似文献   

18.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded complex of phenol with four water molecules PhOH...(H2O)4 (structure 4A) have been predicted using ab initio and DFT (B3LYP) calculations with 6-31G(d,p) basis set. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and B3LYP calculations show that the observed four intense bands at 3299, 3341, 3386 and 3430 cm(-1) can be assigned to the hydrogen-bonded OH stretching vibrations in the complex PhOH...(H2O)4 (4A). The complexation leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The predicted red shifts for these vibrations with B3LYP/6-31G(d,p) calculations are in very good agreement with the experimentally observed. It was established that the phenolic OH stretching vibration is the most sensitive to the hydrogen bonding. The predicted red-shift with the B3LYP/6-31G(d,p) calculations for the most stable ring structure 4A (-590 cm(-1)) is in better agreement with the experimentally observed than the red-shift, predicted with SCF/6-31G(d,p) calculations. The magnitude of the wavenumber shift is indicative of relatively strong OH...H hydrogen-bonded interaction. The complexation between phenol and four water molecules leads to strong increase of the IR intensity of the phenolic OH stretching vibration (up to 38 times).  相似文献   

19.
Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers. The calculated frequencies, Raman and IR intensities, and depolarization ratios were compared with the experimental results. The energy difference between the two stable cis-enol forms, calculated at B3LYP/6-311++G**, is only 5.89 kJ/mol. The observed vibrational frequencies and Raman and IR intensities are in excellent agreement with the corresponding values calculated for the most stable conformation, 2TFAA. According to the theoretical calculations, the hydrogen bond strength for the most stable conformer is 57 kJ/mol, about 9.5kJ/mol less than that of AA and about 14.5 kJ/mol more than that of HFAA. These hydrogen bond strengths are consistent with the frequency shifts for OH/OD stretching and OH/OD out-of-plane bending modes upon substitution of CH(3) groups with CF(3) groups. By comparing the vibrational spectra of both theoretical and experimental data, it was concluded that 2TFAA is the dominant isomer.  相似文献   

20.
Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and 18O,18O-tropolone(OH) in the 800 to 300 cm-1 spectral range. No FTIR absorption was detected in the 300-150 cm-1 range. The known zero-point (ZP) tunneling splitting values Delta0 = 0.974 cm-1 for tropolone(OH) (Tanaka et al.) and 0.051 cm-1 for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Deltav to be estimated for fundamentals including three with strong O...O stretching displacements [cf. for tropolone(OH) nu13(a1) = 435.22 cm-1 with HDelta13 = 1.71 cm-1 = 1.76 HDelta0, and for tropolone(OD) nu13(a1) = 429.65 cm-1 with DDelta13 = 0.32 cm-1 = 6.27 DDelta0]. The majority of Deltav splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta0 values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing Deltav splittings and many OH/D and 18O/16O isotope effects. Approximate values are obtained for the ZP splittings 88Delta0 and 86Delta0 of the doubly and singly 18O-labeled isotopomers of tropolone(OH). The diverse values of the observed Deltav/Delta0 splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号