首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Forum contribution, we highlight the radical-type reactivities of one-electron-reduced Fischer-type carbenes. Carbene complexes of group 6 transition metals (Cr, Mo, and W) can be relatively easily reduced by an external reducing agent, leading to one-electron reduction of the carbene ligand moiety. This leads to the formation of "carbene-radical" ligands, showing typical radical-type reactivities. Fischer-type carbene ligands are thus clearly redox-active and can behave as so-called "redox noninnocent ligands". The "redox noninnocence" of Fischer-type carbene ligands is most clearly illustrated at group 9 transition metals in the oxidation state II+ (Co(II), Rh(II), and Ir(II)). In such carbene complexes, the metal effectively reduces the carbene ligand by one electron in an intramolecular redox process. As a result, the thus formed "carbene radicals" undergo a variety of radical-type C-C and C-H bond formations. The redox noninnocence of Fischer-type carbene ligands is not just a chemical curiosity but, in fact, plays an essential role in catalytic cyclopropanation reactions by cobalt(II) porphyrins. This has led to the successful development of new chiral cobalt(II) porphyrins as highly effective catalysts for asymmetric cyclopropanation with unprecedented reactivity and stereocontrol. The redox noninnocence of the carbene intermediates results in the formation of carbene-radical ligands with nucleophilic character, which explains their effectiveness in the cyclopropanation of electron-deficient olefins and their reduced tendency to mediate carbene dimerization. To the best of our knowledge, this represents the first example in which the redox noninnocence of a reacting ligand plays a key role in a catalytic organometallic reaction. This Forum contribution ends with an outlook on further potential applications of one-electron-activated Fischer-type carbenes in new catalytic reactions.  相似文献   

2.
Rhodation of trimethylene-bridged diimidazolium salts induces the intramolecular activation of an alkane-type C-H bond and yields mono- and dimetallic complexes containing a formally monoanionic C,C,C-tridentate dicarbene ligand bound to each rhodium centre. Mechanistic investigation of the C(alkyl)-H bond activation revealed a significant rate enhancement when the carbene ligands are bound to the rhodium centre via C4 (instantaneous activation) as compared to C2-bound carbene homologues (activation incomplete after 2 days). The slow C-H activation in normal C2-bound carbene complexes allowed intermediates to be isolated and suggests a critical role of acetate in mediating the bond activation process. Computational modelling supported by spectroscopic analyses indicate that halide dissociation as well as formation of the agostic intermediate is substantially favoured with C4-bound carbenes. It is these processes that discriminate the C4- and C2-bound systems rather than the subsequent C-H bond activation, where the computed barriers are very similar in each case. The tridentate dicarbene ligand undergoes selective H/D exchange at the C5 position of the C4-bound carbene exclusively. A mechanism has been proposed for this process, which is based on the electronic separation of the abnormal carbene ligand into a cationic N-C-N amidinium unit and a metalla-allyl type M-C-C fragment.  相似文献   

3.
A systematic density functional investigation has been carried out on the structure, stability and reactivity of heterocyclic carbenes of diverse flexibility, i.e., carbenes with different modes of binding specially normal and remote mode of binding. Ligating properties of these carbenes have been assessed by virtue of their HOMO energies and verified further by inspection of the symmetric CO frequencies of their respective palladium carbonyl complexes. All the remote carbenes were found to have higher σ-donating abilities compared to their normal analogs. N-heterocyclic carbenes 1 and 5 are found to be electrophilic in nature while the remote carbene 3 and P-heterocyclic carbene 6 are found to be nucleophilic. Quantum theory of atoms in molecules (QTAIM) reveals significant covalent character in the Ccarbene-Pd bonds.  相似文献   

4.
This work reveals ambident nucleophilic reactivity of imidazolium cations towards carbonyl compounds at the C2 or C4 carbene centers depending on the steric properties of the substrates and reaction conditions. Such an adaptive behavior indicates the dynamic nature of organocatalysis proceeding via a covalent interaction of imidazolium carbenes with carbonyl substrates and can be explained by generation of the H-bonded ditopic carbanionic carbenes.  相似文献   

5.
Studies on reactions of carbenes in reactive organic glasses at low temperatures clearly reveal that solution results and liquid phase mechanistic rules cannot be readily extrapolated to matrix conditions. Thus, the usual course of reaction of a carbene with an alkene in solution results in the formation of a cyclopropane for both the singlet and triplet states although a one-step addition possible for singlet carbene produces the cyclopropane stereospecifically and a stepwise pathway with the triplet state affords two possible stereoisomers of the cyclopropane. In a sharp contrast, the formal insertion products into the allylic C-H bonds of alkenes are produced at the expense of the cyclopropane when carbene is generated in alkene matrix at low temperature. Similar results are obtained in the reaction with alcohols, where the C-H insertion products are formed in low temperature alcoholic matrices at the expense of the O-H insertion products which are predominant products in the reaction with alcoholic solution at ambient temperature. The 13C labelling experiments as well as deuterium kinetic isotope effects suggest that these C-H insertion products are most probably produced from the triplet carbene, not from the singlet, by abstraction of H atom from the matrix followed by the recombination of the resulting radical pairs. Kinetic studies using ESR and laser flash photolysis techniques demonstrate that the mechanism of a H-atom transfer reaction changes from a completely classical process in a soft warm glass to a completely quantum mechanical tunneling process in a cold hard glass. Thus, as the reaction temperature is lowered, the classical reaction rate decreases, and eventually becomes much slower than decay by hydrogen atom tunneling. The members of the radical pairs which usually diffuse apart in a fluid solution are not able to diffuse apart owing to the limited diffusibility within a rigid matrix and therefore recombine with high efficiency to give the CH “insertion” products. A rather surprising and intriguing difference between the C-H insertion undergone by singlet carbenes in fluid solution at ambient temperatures and one by triplet carbenes in matrix at low temperature is noted. Thus, a marked increase in the primary and secondary C-H insertion over the tertiary is observed in the matrix reaction indicating that triplet carbenes tend to abstract H from less crowded C-H bonds. This is interpreted to indicate that the distance between carbenic center and tunneling H becomes important in H atom tunneling process. More surprisingly, the C-H insertion by triplet carbene by the abstraction-recombination mechanism in a rigid matrix proceeds with retention of the configuration, suggesting that the solid state prevents motion of the radicals to the extent that does not allow racemization to occur. Reactions with heteroatom substrates such as ethers, amines, alkyl halides and ketones are also subject to the matrix effects and the C-H insertion products increase at the expense of singlet carbene reaction products resulting from the interaction with the heteroatoms. Stereoselectivities of cyclopropanation to styrenes are also shown to be affected by the matrix effects. t-Butyl alcohol matrix is shown to be unreactive toward carbenes and thus can be used as a “solvent” in matrix carbene reactions presumably due to a large inert guest cavity provided by bulky tertiary alcohol which binds a molecular aggregate inside it. H atom tunneling in the matrix is also shown to compete with very efficient intramolecular migration of hydrogen to the carbenic center. Migration aptitude as well as stereochemistry are also found to be subject to the matrix effects.  相似文献   

6.
Substituent effects of fused six, and five‐membered aromatic rings are investigated on the stability, aromaticity, charge distribution, nucleophilic (N), and electrophilic (ω) characters of 20 singlet (s) and triplet (t) Hammick carbenes, at B3LYP/AUG‐cc‐pVTZ and M06‐2X/AUG‐cc‐pVTZ. Results display: (a) The higher thermodynamic and kinetic stability is revealed by carbenes situated between two nitrogen and/or two oxygen heteroatoms of two substituted rings, in a “W” arrangement toward the carbenic center; (b) Regardless of the arrangement, the order of thermodynamical and kinetic stabilization for fused rings is pyrrole > furan > thiophene > phosphole. (c) The substituted Hammick carbenes with two fused heterocyclics, in a given arrangement, show more stability than unsubstituted Hammick carbene; (d) While two five‐membered heterocyclic rings stabilize their corresponding substituted carbenes, two benzene rings destabilize Hammick carbene; (e) In all structures, s species emerges as ground state, exhibiting more stability than its t state; (f) The scrutinized s carbenes show higher N and lower ω than their corresponding t states.  相似文献   

7.
A number of para-substituted chloro(aryl)carbenes are generated within the cavities of a series of dry alkali metal cation-exchanged zeolites (LiY, NaY, KY, RbY, and CsY) upon laser flash photolysis of the corresponding diazirine precursor. The absolute reactivity of the chloro(aryl)carbene is found to be strongly dependent on both the nature of the electron-donating and -withdrawing properties of the aryl substituent and the nature of the zeolite charge-balancing cations. The results strongly suggest that two opposing mechanisms for capture of the carbene can occur depending on whether the zeolite framework behaves as a nucleophilic reagent or an electrophilic reagent in its reaction with the carbene center. Hammett relationships for the decay of the carbene as a function of aryl substituent and zeolite counterion versus the sigma+ substituent parameter support a change in mechanism as the carbene center toggles between being electron poor and electron rich. For the electron-poor chloro(4-nitrophenyl)carbene, a framework adduct is proposed upon reaction of the nucleophilic [Si-O-Al]- bridge with the carbene center, and for the electron-rich chloro(4-methoxyphenyl)carbene, an adduct with the tight Li+ cation is proposed.  相似文献   

8.
[(NHC)(cymene)RuCl2] (NHC=N-heterocyclic carbene) complexes instigate a light-driven gem-hydrogenation of internal alkynes with concomitant formation of discrete Grubbs-type ruthenium carbene species. This unorthodox reactivity mode is harnessed in the form of a “hydrogenative metathesis” reaction, which converts an enyne substrate into a cyclic alkene. The intervention of ruthenium carbenes formed in the actual gem-hydrogenation step was proven by the isolation and crystallographic characterization of a rather unusual representative of this series carrying an unconfined alkyl group on a disubstituted carbene center.  相似文献   

9.
The photochemistry of diazirines and diazo compounds is not as simple as nitrogen extrusion and carbene formation. The C-H bonds adjacent to the diazo and diazirine moieties can migrate in the excited state and produce stable products without the benefit of a relaxed carbene intermediate. Additionally, cyclobutyl substituted systems exhibit carbon migration. It is unfortunate that the products of photochemical rearrangement of precursor excited states are identical to the products of thermal rearrangement of carbenes. This has prevented accurate measurement of the yield and absolute reactivity of alkylcarbenes. That pyridine reacts selectively with carbenes and not with the excited states of their nitrogenous precursors has allowed the separation of these two pathways and an appreciation of their relative importance with structural variation.  相似文献   

10.
The synthesis and reactivity study of the first isolable boraphosphaketene, cyclic(alkyl)(amino) carbene (CAAC)-borafluorene-P=C=O ( 2 ), is described. Photolysis of compound 2 results in the formation of CAAC-stabilized BP-doped phenanthryne ( 3 ) through tandem decarbonylation, monoatomic phosphide insertion, and ring-expansion. Notably, while BN-doped phenanthryne was previously discussed as a reactive intermediate which could not be isolated, the heavier BP-doped analogue exhibits remarkable solution and solid-state stability. The reactivity of 2 with stable carbenes was also explored. Addition of CAAC to 2 led to migration of the original CAAC ligand from boron to phosphorus and coordination of the added CAAC to carbon, affording compound 4 . Reaction of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (NHC) with 2 resulted in N−C bond activation to give the unusual spiro-heterocyclic compound ( 5 ).  相似文献   

11.
A comprehensive study of the reactivity of Lewis bases with dihalodiboranes(4) is presented. Diaryldihalodiboranes provide rearranged monoadducts when treated with cyclic (alkyl)(amino)carbenes, but halide‐bridged adducts when treated with a range of pyridyl bases. Alternatively, the combination of diaminodihalodiboranes with strong carbene donors leads to boraborenium salts. The reduction and halide‐abstraction reactivity of these adducts was also explored, leading to intramolecular C?H activation and the first 1,2‐bis(borenium) dication.  相似文献   

12.
The [3 + 2] cycloaddition of azides and acetylenes followed by nitrogen quaternization was applied for the generation of novel and highly modular triazolium salts. The selective substitution of the 1,3,4-substitution pattern presets such salts as precursors for a new class of abnormal carbene ligands, thus expanding the family of these high-impact ligands. Metalation of the triazolium salts is highly versatile and is illustrated by direct C-H bond activation as well as by applying a transmetalation protocol, thus providing access to Pd(II), Ru(II), Rh(I), and Ir(I) abnormal carbene complexes. The donor properties of these carbenes were analyzed by using Tolman electronic parameters and were found to be slightly stronger than those the most basic normal carbenes.  相似文献   

13.
The synthesis and reactivity study of the first isolable boraphosphaketene, cyclic(alkyl)(amino) carbene (CAAC)‐borafluorene‐P=C=O ( 2 ), is described. Photolysis of compound 2 results in the formation of CAAC‐stabilized BP‐doped phenanthryne ( 3 ) through tandem decarbonylation, monoatomic phosphide insertion, and ring‐expansion. Notably, while BN‐doped phenanthryne was previously discussed as a reactive intermediate which could not be isolated, the heavier BP‐doped analogue exhibits remarkable solution and solid‐state stability. The reactivity of 2 with stable carbenes was also explored. Addition of CAAC to 2 led to migration of the original CAAC ligand from boron to phosphorus and coordination of the added CAAC to carbon, affording compound 4 . Reaction of 1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene (NHC) with 2 resulted in N?C bond activation to give the unusual spiro‐heterocyclic compound ( 5 ).  相似文献   

14.
Persistent triplet diphenylcarbenes with considerable stability have been shown to be trapped by tetramethylpiperidine N-oxides (TEMPOs) to give the corresponding benzophenones as major products along with tetramethylpiperidine, which indicates that the reaction pattern is essentially identical with that observed for parent triplet diphenylcarbene. The absolute rate constants for the quenching reaction were measured by a laser flash photolysis technique and compared with those for quenching by other typical triplet carbene quenchers. The results showed that the reactivity of TEMPOs toward triplet carbenes was lower than that of oxygen but higher than that of 1,4-cyclohexadiene. The advantages of TEMPOs as a triplet carbene quencher as opposed to the other quenchers are discussed, and TEMPOs are shown to be very convenient reagents to estimate the reactivity of triplet carbenes.  相似文献   

15.
N‐heterocyclic carbenes (NHCs) based on imidazole‐2‐ylidene ( 1 ) or the saturated imidazolidine‐2‐ylidene ( 2 ) scaffolds are long‐lived singlet carbenes. Both benefit from inductive stabilization of the sigma lone pair on carbon by neighboring N atoms and delocalization of the N pi lone pairs into the nominally vacant p‐pi atomic orbital at the carbene carbon. With thermochemical schemes G4 and CBS‐QB3, we estimate the relative thermodynamic stabilization of smaller ring carbenes and acyclic species which may share the keys to NHC stability. These include four‐membered ring systems incorporating the carbene center, two trivalent N centers, and either a boron or a phosphorus atom to complete the ring. Amino‐substituted cyclopropenylidenes have been reported but three‐membered rings containing the carbene center and two N atoms are not known. Our calculations suggest that amino‐substituted cyclopropenylidenes are comparable in stability to the four‐membered NHCs but that diazacyclopropanylidenes would be substantially less effectively stabilized. Concluding the series are acyclic carbenes with and without neighboring N atoms and a series of “two‐membered ring” azapropadienenylidene cations of form :C?N?W with W = an electron‐withdrawing agent. We have studied W = NO2, CH2(+), CF2(+), and (CN)2C(+). Although these systems display a degree of stabilization and carbene‐like electronic structure, the stability of the NHCs is unsurpassed. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
By utilizing stable carbenes with low‐lying LUMOs, coupling with the stable nucleophilic diaminocyclopropenylidene was achieved. This reaction resulted in the formation of two new and rare examples of a bent allene as well as the isolation of the first carbene–carbene heterodimer.  相似文献   

17.
General properties of nucleophilic carbenes are addressed briefly. The preparation of oxadiazoline precursors of such carbenes, and some of their chemical reactions, are presented. Intramolecular reactions include rearrangement and attack by the carbene center on a tethered functional group. Intermolecular reactions include nucleophilic attack at the carbonyl carbon of isocyanates and at the triple bond of dimethyl acetylenedicarboxylate.  相似文献   

18.
Carbocyclic carbenes (CCCs) are a class of nucleophilic carbenes which are very similar to N-heterocyclic carbenes (NHCs) in terms of their reactivity, but they do not contain a stabilizing heteroatom in their cyclic ring system. In this study, 17 representative known CCCs and 34 newly designed CCCs are evaluated using quantum chemical methods, and the results are compared in terms of their stability, nucleophilicity, and proton affinity (PA) parameters. The results are divided on the basis of ring size of the known and reported CCCs. The stability, nucleophilicity, PA, complexation energy, and bond strength–related parameters were estimated using M06/6-311++G(d,p) method. The results indicated that the CCCs known in the literature are strong σ-electron donating species and have considerable π-accepting properties. This study led to the design and identification of a few new CCCs with dimethylamine and diaminomethynyl substituents which can be singlet stable and are substantially nucleophilic. © 2018 Wiley Periodicals, Inc.  相似文献   

19.
[reaction: see text] The reactivity of phosphino(trimethylsilyl)carbenes 1 with several organic acids has been examined in order to evaluate the pKa values of the conjugate acids. Carbenes 1 react efficiently with C-organic acids such as 1,3-dimesitylimidazolium chloride, phenylacetylene, acetonitrile, and acetyltrimethylsilane, which have pKa's in DMSO in the range 18-31. However, the reaction of the conjugate acids 1H+ with the anion perturbs the determination of the genuine basicity of 1. Theoretical calculations have been performed in order to quantify the basicity of phosphino(trimethylsilyl)carbenes 1 and to compare them with that of N-heterocyclic carbenes 2. The pKa of 1H+ in DMSO has been computed to be in the 23.0-23.4 range, so that 1 is not strong enough as a base to spontaneously deprotonate organic acids such as phenylacetylene, acetonitrile, or acetyltrimethylsilane. However, its conjugate acid 1H+ is a strong electrophile and easily reacts with the nucleophilic conjugate bases of these acids leading to the formation of the corresponding phosphorus ylides.  相似文献   

20.
A new type of metal carbene complexes of group 9, specifically a cationic Fischer carbene of rhodium(I), has been synthesized from chromium carbene complexes via double transfer of carbene and CO ligands. These complexes reveal a different reactivity than other transition metal carbenes, including their chromium precursors, toward neutral and electron-poor alkynes, giving selectively polysubstituted cyclopentenones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号