首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient generation of femtosecond pulses at 524 nm is demonstrated by the extracavity frequency doubling of the output of a diode-pumped femtosecond Yb3+:KY(WO4)2 laser using a periodically poled LiTaO3 crystal. An average second-harmonic power of 120 mW is produced at an internal conversion efficiency of 40%. The temporal characteristics of the frequency-doubled pulses as a function of focusing conditions in a thick nonlinear crystal are investigated experimentally, and pulses as short as 225 fs are generated at a pulse repetition frequency of 86 MHz.  相似文献   

2.
We investigate numerically the second-harmonic generation from near infrared 100 fs pulses in periodically and aperiodically poled lithium niobate crystals, taking into account the group-velocity mismatch, the group-velocity dispersion, and self-action effects. For the first time, we show that a tenfold pulse compression can be obtained at both fundamental and second-harmonic frequencies. The mechanism of compression and the pertinent quality factors are discussed.  相似文献   

3.
Efficient generation of tunable femtosecond pulses in the blue is reported in the nonlinear crystal BiB3O6. By use of fundamental pulses from a mode-locked Ti:sapphire laser at 76 MHz, single-pass second-harmonic average powers of as much as 830 mW have been generated at 50% conversion efficiency, and a tunable range of 375-435 nm in the blue is demonstrated. Temporal measurements using cross correlation of the fundamental and second-harmonic pulses in a 100-microm-thick beta-BaB2O4 crystal result in blue pulse durations of 220 fs for 130-fs fundamental pulses. Direct experimental comparison with beta-BaB2O4 confirms the superior performance BiB3O6 for second-harmonic generation of femtosecond pulses.  相似文献   

4.
We report on nonlinear pulse compression at very high average power. A high-power fiber chirped pulse amplification system based on a novel large pitch photonic crystal fiber delivers 700 fs pulses with 200 μJ pulse energy at a 1 MHz repetition rate, resulting in 200 W of average power. Subsequent spectral broadening in a xenon-filled hollow-core fiber and pulse compression with chirped mirrors is employed for pulse shortening and peak power enhancement. For the first time, to our knowledge, more than 100 W of average power are transmitted through a noble-gas-filled hollow fiber. After pulse compression of 81 fs, 93 μJ pulses are obtained at a 1 MHz repetition rate.  相似文献   

5.
Sung J  Chen BC  Lim SH 《Optics letters》2008,33(13):1404-1406
We report a new version of spectral phase interferometry for direct electric field reconstruction (SPIDER) requiring only a single phase-shaped laser beam. A narrowband probe pulse is selected out of a broadband ultrafast laser pulse by a phase pulse-shaping technique and mixed with the original broadband pulse to generate a second-harmonic generation (SHG) signal. Using another SHG signal solely generated by the broadband pulse as a local oscillator, the spectral phase of the broadband laser pulse can be analytically retrieved by a combination of double-quadrature spectral interferometry and homodyne optical technique for SPIDER (HOT SPIDER). An arbitrary spectral phase at the sample position of a microscope can be compensated with a precision of 0.05 rad over the FWHM of the laser spectrum. It is readily applicable to a nonlinear microscopy technique with a phase-controlled broadband laser pulse.  相似文献   

6.
采用快速傅里叶变换(FFT)算法和Rung-Kutta法对KDP晶体中超短激光脉冲二倍频过程作了研究。详细讨论了群速度失配、群速度色散和三阶非线性相位调制效应对倍频光脉冲波形、光谱及转换效率的影响。研究结果表明:在超短激光脉冲二倍频中,三阶非线性相位调制效应可使二倍频光脉冲形状发生畸变,光谱明显展宽且转换效率降低;当入射基频光功率密度大于100GW/cm2时,三阶非线性效应是影响倍频过程的主要因素。  相似文献   

7.
The self-controlled compression of widely tunable pulses in the visible generated by a non-collinear-type optical parametric amplifier is accomplished by a pulse shaper based on a 4f setup with a pixeled mask in the Fourier plane which is controlled by an evolutionary algorithm in a feedback loop. Pulse durations below 16 fs are achieved by shaping the pulses such that their second-harmonic signal is maximized. The optimization process generally requires less than five minutes. It is shown that the algorithm eventually determines the shaper settings which produce the global optimum for the SH signal. Moreover, pulses having propagated through a disturbing medium which introduced additional group velocity dispersion have been recompressed to below 16 fs. An acceptable value for the phase difference between two adjacent pixels of the liquid crystal mask is experimentally found to be 1.6. The described setup provides a powerful tool for delivering ultrashort tunable pulses to any location within an experiment, as well as tailored sub-20-fs pulses for optimal control studies.  相似文献   

8.
A pair of photons called signal and idler photons, respectively, are produced through the nonlinear process of type-I spontaneous parametric downconversion in BBO crystal pumped by the second-harmonic wave of a Ti:sapphire femtosecond laser pulse. The two-order interference phenomenon of the signal photon in Michelson interferometer is observed and give an analysis in detail.  相似文献   

9.
Efficient generation of femtosecond pulses in the wavelength range from 520 to 675 nm by external frequency doubling the signal wave of a non-critically phase-matched picosecond KTP Optical Parametric Oscillator (OPO) in a non-critically phase-matched temperature tuned LiB3O5(LBO) crystal is demonstrated. An average power of the second harmonic as high as 310 mW at 575 nm was generated. In the absence of group velocity mismatch of LBO for a wavelength of the OPO at about 1.3 µm the minimum second-harmonic pulse width was 400 fs at 645 nm.  相似文献   

10.
Theoretical analysis is given to second-harmonic generation in 2D nonlinear photonic crystals of rectangular symmetry with rectangular domains. Formulas for the nonlinear response of the crystal with an arbitrary domain structure are derived within the approximation of a given field. A possibility of calculating time profiles of second-harmonic pulses down to the femtosecond range is demonstrated.  相似文献   

11.
We report time resolved measurements of second-harmonic and hard x rays emitted during the interaction of an intense laser pulse (10(16) W cm(-2), 100 fs) with a preplasma generated on a solid target. We observe that for a particular length scale the second harmonic goes through a minimum, while hard x-ray emission on the contrary maximizes. Theoretical or numerical modeling of this anticorrelation in terms of wave breaking of strongly driven electron plasma waves clearly brings out hitherto unexplored links between the physical mechanisms of second-harmonic generation and hard x-ray emission.  相似文献   

12.
We present the results of theoretical studies of the process of generation of terahertz radiation arising via interaction of few-cycle laser pulses propagating in an isotropic nonlinear medium. Numerical time-integration, by the finite-difference method, of the system of nonlinear Maxwell equations has been performed. We consider the interaction of mutually-orthogonal linearly polarized pulses, both having the central wavelength of 1.98 μm, durations of 30 fs, and the energies of 30 nJ, propagating along the normal to the 〈110〉 plane in a 1 mm-thickness GaAs crystal. In the nonlinear part of the medium polarization the without-inertia nonlinear second-order susceptibility is taken into account. The process of formation of a terahertz pulse arising via spectral filtration of supercontinuum formed in the spectra of pump pulses at the output of nonlinear crystal is studied. The dependences of both the current frequency of the pump pulses on time for different lengths of nonlinear crystal and of pump pulse durations on the crystal length are obtained. Also the dependences of the current frequency of the terahertz pulse on time at different crystal lengths, as well as of the efficiency of generation of terahertz radiation on the length of nonlinear crystal and on the energy of pump pulses are obtained.  相似文献   

13.
We demonstrate a coherent synthesis system based on femtosecond Yb-doped fiber laser technology. The output pulse of the amplification system is divided into two replicas and seeded into photonic crystal fibers of two parallel branches for nonlinear pulse compression. Because of the different nonlinear dynamics in the photonic crystal fibers, the compressed pulses show different spectra, which can be spliced to form a broad coherent spectrum. The integrated timing jitter between the pulses of two branches is less than one tenth of an optical cycle.By coherently synthesizing pulses from these two branches, 8 fs few-cycle pulses are produced.  相似文献   

14.
We demonstrate that the group velocities of interacting pulses can be adjusted by pulse tilting to optimize second-harmonic pulse compression for a variety of nonlinear crystals and wavelengths. As an experimental proof we present results of ninefold compression of 1.3-ps Nd:glass laser pulses in beta -barium borate crystal.  相似文献   

15.
啁啾补偿的折返点匹配二倍频   总被引:1,自引:0,他引:1  
提出了一种啁啾补偿群速色散的倍频方法,通过向入射基频光引入合适的初始啁啾,让其与色散相互作用,以实现对基频光脉冲宽度的主动控制,提高转换效率。研究结果表明,这种方法能显著地提高倍频转换效率,以氘含量12.6%(摩尔百分比)的KD*P晶体对脉宽30fs,中心波长为1.053μm的宽带基频光的折返点匹配宽带二倍频过程为例,当基频光转换极限位置处于晶体中心时,能取得最佳的啁啾补偿效果,转换效率可提高近22%。进一步研究了转换效率和转换带宽与晶体长度的关系。  相似文献   

16.
A blue-shifted output of a photonic-crystal fiber, providing a frequency upconversion of femtosecond Ti:sapphire laser pulses, is used to seed a double-pass optical parametric oscillator (OPA). The OPA is based on a BBO crystal, pumped by 65-mW 150-fs second-harmonic pulses of a Ti:sapphire laser. Gain factors in excess of 103 are demonstrated for such an OPA, yielding tunable light pulses within the range of wavelengths from 420 to 650 nm, a peak power up to 250 kW, and a typical pulse width of about 200 fs at a repetition rate of 100 kHz. PACS 42.81.Gs; 42.81.Qb  相似文献   

17.
Experiments and numerical simulations are used to study non-phasematched single-mode third harmonic generation occurring simultaneously with fs pulse spectral broadening in highly nonlinear fibre. Pump pulses around 100 fs at 1560 nm injected into sub-5 cm lengths of commercially-available highly nonlinear fibre are observed to undergo spectral broadening spanning over 700 nm at the -30 dB level, and to simultaneously generate third harmonic radiation around 520 nm. Simulations based on a generalized nonlinear envelope equation are shown to well reproduce the spectral structure of the broadened pump pulses and the generated third harmonic signal. PACS 42.65.-k; 42.81.Dp  相似文献   

18.
Autocorrelation measurement of ultrashort uv laser pulses using non-phasematched second-harmonic generation from the surface of nonlinear crystals is described. The technique is demonstrated for wavelengths from 378–300 nm and pulse durations of 30 ps–300 fs.  相似文献   

19.
We demonstrate a new, nonlinear optical effect of electric currents. First, a steady current is generated by applying a voltage on a doped GaAs crystal. We demonstrate that this current induces second-harmonic generation of a probe laser pulse. Second, we optically inject a transient current in an undoped GaAs crystal by using a pair of ultrafast laser pulses and demonstrate that it induces the same second-harmonic generation. In both cases, the induced second-order nonlinear susceptibility is proportional to the current density. This effect can be used for nondestructive, noninvasive, and ultrafast imaging of currents. These advantages are illustrated by the real-time observations of a coherent plasma oscillation and spatial resolution of current distribution in a device. This new effect also provides a mechanism for electrical control of the optical response of materials.  相似文献   

20.
Liu X  Qian L  Wise F 《Optics letters》1999,24(23):1777-1779
We report a simple optical pulse-compression technique based on quadratic nonlinear media. Negative nonlinear phase shifts are generated by phase-mismatched second-harmonic generation, and the phase-modulated pulses are then compressed by propagation through materials with normal dispersion. Millijoule-energy pulses from a Ti:sapphire amplifier are compressed from 120 to 30 fs, and calculations indicate that compression ratios of >10 are realistically achievable by use of this approach with optimal materials. The insertion loss of the compressor can be less than 10% of the pulse energy, and scaling to higher pulse energies will be straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号