首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
根据光整流效应,利用超快激光脉冲泵浦GaSe晶体实现了0.2~2.5 THz的宽带太赫兹辐射输出。禁带中的电子在两个800 nm光子的作用下激发到导带中形成自由载流子,进而吸收所产生的太赫兹辐射,最终导致太赫兹的输出随泵浦功率的增加而趋于饱和。为了研究双光子吸收对太赫兹输出的影响,测量了800 nm处的GaSe晶体的双光子吸收系数,结果为 0.165 cm/GW。通过对太赫兹输出实验数据的拟合,得到GaSe晶体中自由载流子对太赫兹输出的吸收截面为1×10-15 cm2。本文的研究结果可用于优化GaSe晶体在强激光泵浦下的太赫兹转换效率。  相似文献   

2.
黄敬国  陆金星  周炜  童劲超  黄志明  褚君浩 《物理学报》2013,62(12):120704-120704
在众多实现太赫兹辐射的方法中, 非线性光学共线差频能够实现高功率、宽波段、连续可调谐的太赫兹波辐射. 理论分析表明, 各向同性磷化镓晶体, 在1064 nm附近波长激光共线差频下具有毫米量级的相干长度, 能够满足高功率宽波段的太赫兹辐射条件.实验证明, 磷化镓晶体共线差频实现高功率宽波段的太赫兹光辐射, 其太赫兹光波长调谐范围为95.9–773.4 μm (0.39–3.13 THz), 最高峰值功率7 W位于频率2.0 THz处.该实验结果与理论计算基本保持一致. 关键词: 太赫兹源 磷化镓 共线差频  相似文献   

3.
针对时间位相调制的宽带激光,采用分步离散傅里叶变换及四阶龙格-库塔算法进行数值模拟计算。讨论了采用KDP晶体级联方式时,入射基频光的光强、带宽以及晶体厚度对三倍频转换效率的影响。对采用一块РⅠ类二倍频晶体、一块Ⅱ类和一块Ⅰ类双混频晶体的级联宽带三倍频方式进行了晶体参数的优化。研究结果表明,使用两块级联的KDP晶体作为混频晶体,不仅能有效地提高带宽较宽条件下三倍频光的转换效率,还可以显著增大宽带三倍频的动态范围。经优化后,带宽1.11 nm时入射基频光强在3~8 GW/cm2范围内的三倍频转换效率可保持在60%~70%,比采用单倍频单混频方案时增大了30%~40%。  相似文献   

4.
We demonstrate diode laser modules with high spectral radiance larger than 1 GW/cm2/sr/nm in the visible spectral range. These highly brilliant laser light sources enable the development of next-generation 3D displays. About 1W output power from small-sized modules was achieved at 635 nm by direct diode laser emission and at 530 nm using single pass second harmonic generation (SHG) of a highly brilliant near-infrared laser diode.  相似文献   

5.
基于圆台结构的超宽带极化不敏感太赫兹吸收器   总被引:1,自引:0,他引:1       下载免费PDF全文
莫漫漫  文岐业  陈智  杨青慧  李胜  荆玉兰  张怀武 《物理学报》2013,62(23):237801-237801
本文提出一种基于圆台形吸收单元的超宽带、极化不敏感的超材料太赫兹吸收器. 该超材料吸收器采用金属薄膜金和介质层二氧化硅交替叠加的多层结构. 采用商业软件CST Studio Suite 2009时域求解器计算了其在0–10 THz波段内的吸收率Aω),在2–10 THz之间实现了对入射太赫兹波的超宽频带强吸收. 仿真结果表明,由于其圆台形单元结构,在器件垂直方向上形成一系列不同尺寸的微型吸收器,产生了吸收频点相连的多频吸收峰. 利用不同吸收峰的耦合叠加效应,获得超过8 THz的超宽带太赫兹波吸收,吸收强度达到92.3%以上. 这一结构具有超宽带强吸收,360°极化不敏感以及易于加工等优越特性,因而在太赫兹波探测器、光谱成像以及隐身技术方面具有潜在的应用. 关键词: 太赫兹波 超材料吸收器 圆台结构 超宽带  相似文献   

6.
We report an efficient transient stimulated Raman conversion of high-energy picosecond pulses at 1350 nm into the eye-safe 1500-nm wavelength range by use of a KGd(WO4)2 crystal. The conversion efficiency into either 1503- or 1537-nm radiation (767- or 901-cm(-1) Raman modes, respectively) is measured to be approximately 10% in a single-pass configuration. The transient Raman gain coefficient is found to be approximately 0.8 cm/GW. Simultaneous generation of multiple Raman lines is also observed.  相似文献   

7.
实验测量了室温下磷酸二氢钾KH2PO4(KDP)晶体0.2~1.6THz的时域光谱,以及50~4000cm-1范围内的远红外光谱,200~2000nm的紫外-可见-红外光谱。KDP晶体的禁带宽度是5.91eV。在测量范围内有一个很宽的声子吸收带。从0.2~205.5THz吸收系数在35~80cm-1,声子吸收的低频端小于0.2THz。最高的纵光学模声子的频率νLO大约是205.5THz,由此求出这支声子的H—O键的力常数为13.13N·cm-1。  相似文献   

8.
Optical frequency combs enable precision measurements in fundamental physics and have been applied to a growing number of applications, such as molecular spectroscopy, LIDAR and atmospheric trace‐gas sensing. In recent years, the generation of frequency combs has been demonstrated in integrated microresonators. Extending their spectral range to the visible is generally hindered by strong normal material dispersion and scattering losses. In this paper, we report the first realization of a green‐light frequency comb in integrated high‐Q silicon nitride (SiN) ring microresonators. Third‐order optical non‐linearities are utilized to convert a near‐infrared Kerr frequency comb to a broadband green light comb. The 1‐THz frequency spacing infrared comb covers up to 2/3 of an octave, from 144 to 226 THz (or 1327‐2082 nm), and the simultaneously generated green‐light comb is centered around 570‐580 THz (or 517‐526 nm), with comb lines emitted down to 517 THz (or 580 nm) and up to 597 THz (or 502 nm). The green comb power is estimated to be as high as −9.1 dBm in the bus waveguide, with an on‐chip conversion efficiency of −34 dB. The proposed approach substantiates the feasibility of on‐chip optical frequency comb generation expanding to the green spectral region or even shorter wavelengths.

  相似文献   


9.
We present a multimodal diode-laser-based terahertz (THz) spectroscopy system. In contrast to other laser-based THz setups that provide either cw or broadband THz generation, our configuration combines the advantages of both approaches. Our low complexity setup enables fast switching from cw difference frequency generation to broadband THz emission, enabling sophisticated data analysis like much more complex time domain spectroscopy systems.  相似文献   

10.
In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.  相似文献   

11.
The generation of brilliant, stable, and broadband coherent synchrotron radiation (CSR) in electron storage rings depends strongly on ring rf system properties such as frequency and gap voltage. We have observed intense coherent radiation at frequencies approaching the THz regime produced by the MIT-Bates South Hall Ring, which employs a high-frequency S-band rf system. The measured CSR spectral intensity enhancement with 2 mA stored current was up to 10,000 times above background for wave numbers near 3 cm(-1). The measurements also uncovered strong beam instabilities that must be suppressed if such a very high rf frequency electron storage ring is to become a viable coherent THz source.  相似文献   

12.
Femtosecond pump pulses are strongly attenuated in lithium niobate owing to two-photon absorption; the relevant nonlinear coefficient beta(p) ranges from approximately 3.5 cm/GW for lambda(p) = 388 nm to approximately 0.1 cm/GW for 514 nm. In collinear pump-probe experiments the probe transmission at the double pump wavelength 2lambda(p) = 776 nm is controlled by two different processes: A direct absorption process involving pump and probe photons (beta (r) = 0.9 cm/GW) leads to a pronounced short-duration transmission dip, whereas the probe absorption by pump-excited charge carriers results in a long-duration plateau. Coherent pump-probe interactions are of no importance. Hot-carrier relaxation occurs on the time scale of < or approximately equal to 0.1 ps.  相似文献   

13.
An overview of the major techniques to generate and detect THz radiation so far,especially the major approaches to generate and detect coherent ultra-short THz pulses using ultra-short pulsed laser,has been presented.And also,this paper,in particularly,focuses on broadband THz spectroscopy and addresses on a number of issues relevant to generation and detection of broadband pulsed THz radiation as well as broadband time-domain THz spectroscopy (THz-TDS) with the help of ultra-short pulsed laser.The time-dom...  相似文献   

14.
Stepanov AG  Bonacina L  Wolf JP 《Optics letters》2012,37(13):2439-2441
We propose a DAST/SiO(2) multilayer structure for efficient generation of near-single-cycle THz transients with average frequency around 6 THz via collinear optical rectification of 800 nm femtosecond laser pulses. The use of such a composite material allows compensation for the phase mismatch that accompanies THz generation in bulk DAST crystals. The presented calculations indicate a strong increase in the THz generation efficiency in the DAST/SiO(2) structure in comparison to the case of bulk DAST crystal.  相似文献   

15.
In this paper, the Raman gain coefficients of ammonium dihydrogen phosphate(ADP) and potassium dihydrogen phosphate(KDP) crystals are measured. By using a pump source of a 30-ps, 532-nm laser, the gain coefficients of ADP and KDP are 1.22 cm/GW, and 0.91 cm/GW, respectively. While for a 20-ps, 355-nm pump laser, the gain coefficients of these two crystals are similar, which are 1.95 cm/GW for ADP and 1.86 for KDP. The present results indicate that for ultra-violet frequency conversion, the problem of stimulated Raman scattering for ADP crystal will not be more serious than that for KDP crystal. Considering other advantages such the larger nonlinear optical coefficient, higher laser damage threshold,and lower noncritical phase-matching temperature, it can be anticipated that ADP will be a powerful competitor to KDP in large aperture, high energy third-harmonic generation or fourth-harmonic generation applications.  相似文献   

16.
Intense terahertz pulses by four-wave rectification in air   总被引:6,自引:0,他引:6  
Cook DJ  Hochstrasser RM 《Optics letters》2000,25(16):1210-1212
We describe a new four-wave rectification method for the generation of intense, ultrafast terahertz (THz) pulses from gases. The fundamental and second-harmonic output of an amplified Ti:sapphire laser is focused to a peak intensity of ~5x10(14)W/cm (2) . Under these conditions, peak THz fields estimated at 2 kV/cm have been observed; the measured power spectrum peaks near 2 THz. Phase-dependent measurements show that this is a coherent process and is sensitive to the relative phases of the fundamental and second-harmonic pulses. Comparable THz signals have been observed from nitrogen and argon as well as from air.  相似文献   

17.
Phase-matched second-harmonic generation is obtained in various LiInS(2) crystals by use of the tunable picosecond output of the free-electron laser for infrared experiments (FELIX) as the pump source in the mid-IR range from 2.75 to 6.0 microm. Deviations from the phase-matching curve calculated from Boyd's refractive-index data are observed. Furthermore, the optical damage threshold of the crystals has been measured to be 1.1. J/cm(2)(>6 GW/cm(2)) at the 5-microm wavelength. LiInS(2) holds great promise for parametric interaction in the 1-13-microm range.  相似文献   

18.
晶体级联方式宽带三倍频方案的参数优化   总被引:5,自引:2,他引:3       下载免费PDF全文
 针对时间位相调制的宽带激光,采用分步离散傅里叶变换及四阶龙格-库塔算法进行数值模拟计算。讨论了采用KDP晶体级联方式时,入射基频光的光强、带宽以及晶体厚度对三倍频转换效率的影响。对采用一块РⅠ类二倍频晶体、一块Ⅱ类和一块Ⅰ类双混频晶体的级联宽带三倍频方式进行了晶体参数的优化。研究结果表明,使用两块级联的KDP晶体作为混频晶体,不仅能有效地提高带宽较宽条件下三倍频光的转换效率,还可以显著增大宽带三倍频的动态范围。经优化后,带宽1.11 nm时入射基频光强在3~8 GW/cm2范围内的三倍频转换效率可保持在60%~70%,比采用单倍频单混频方案时增大了30%~40%。  相似文献   

19.
An improved Z-scan analysis approach is proposed by establishing and solving the saturable absorption (SA) and reverse-SA (RSA) models, respectively. Near-infrared femtosecond Z-scans are carried out on the synthesized gold nanorods (NRs) possessing the average length of 46 nm using a femtosecond laser operated at the wavelength of 800 nm, which is close to the peak position of longitudinal surface plasmon resonance (SPR) (710 nm) of gold NRs. At lower input intensity of less than 400 GW/cm2 , the normalized transmission exhibits only SA phenomenon; however, when it exceeds 400 GW/cm2 , both SA and RSA are observed. By using the presented Z-scan modeling and theory, the three-photon absorption (3PA) is identified in the material, and the 3PA cross-section is determined to be 1.58×1071 cm6s2 .  相似文献   

20.
Broadband antireflection coatings for passive terahertz (THz) components are extremely important in the application of THz technology. Metallic nano‐films are commonly used for this purpose. Here a new approach to realize polarization independent broadband antireflection in THz range, based on a meta‐surface design is experimentally demonstrated. The internal reflection of a broadband THz pulse (spectral bandwidth of 0.06 – 4 THz) at a Si/air interface can be fully suppressed with a Cr square mesh with deep‐subwavelength dimensions. Small nonuniformity of the meta‐surface structure can enhance the tolerance on structural parameters for achieving the AR condition. The design concept is applicable to other metals and frequency ranges as well, which opens a new window for future AR coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号