首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The widespread and long-term use of TNT has led to extensive study of its thermal and explosive properties. Although much research on the thermolysis of TNT and polynitro organic compounds has been undertaken, the kinetics and mechanism of the initiation and propagation reactions and their dependence on the temperature and pressure are unclear. Here, we report a comprehensive computational DFT investigation of the unimolecular adiabatic (thermal) decomposition of TNT. On the basis of previous experimental observations, we have postulated three possible pathways for TNT decomposition, keeping the aromatic ring intact, and calculated them at room temperature (298 K), 800, 900, 1500, 1700, and 2000 K and at the detonation temperature of 3500 K. Our calculations suggest that at relatively low temperatures, reaction of the methyl substituent on the ring (C-H alpha attack), leading to the formation of 2,4-dinitro-anthranil, is both kinetically and thermodynamically the most favorable pathway, while homolysis of the C-NO(2) bond is endergonic and kinetically less favorable. At approximately 1250-1500 K, the situation changes, and the C-NO(2) homolysis pathway dominates TNT decomposition. Rearrangement of the NO(2) moiety to ONO followed by O-NO homolysis is a thermodynamically more favorable pathway than the C-NO(2) homolysis pathway at room temperature and is the most exergonic pathway at high temperatures; however, at all temperatures, the C-NO(2) --> C-ONO rearrangement-homolysis pathway is kinetically unfavorable as compared to the other two pathways. The computational temperature analysis we have performed sheds light on the pathway that might lead to a TNT explosion and on the temperature in which it becomes exergonic. The results appear to correlate closely with the experimentally derived shock wave detonation time (100-200 fs) for which only the C-NO(2) homolysis pathway is kinetically accessible.  相似文献   

2.
New strategies for onsite determination of trace 2,4,6-trinitrotoluene (TNT) explosives have become a research hotspot for homeland security needs against terrorism and environmental concerns. Herein, we designed a ratiometric fluorescence nanohybrid comprising 3-mercaptopropionic acid-capped green-emitting CdTe quantum dots (gQDs) encapsulated into SiO2 sphere and l-cysteine (Lcys)-capped red-emitting CdTe QDs (rQDs) conjugated onto SiO2 surface. The surface Lcys can be used as not only the stabilizer of the rQDs but also the primary amine provider which can react with TNT to form Meisenheimer complexes. Without any additional surface modification procedure, the fluorescence of rQDs equipped with Lcys was selectively quenched by TNT because electrons of the rQDs transferred to TNT molecules due to the formation of Meisenheimer complexes. Meanwhile, the embedded gQDs always remained constant. Upon exposure to increasing amounts of TNT, the fluorescence of rQDs could be gradually quenched and consequently the logarithm of the dual emission intensity ratios exhibited a good linear negative correlation with TNT concentration over a range of 10 nM–8 μM with a low detection limit of 3.3 nM. One can perform onsite visual determination of TNT with high resolution because the ratiometric fluorescence nanosensing system exhibited obvious fluorescence color changes. This sensing strategy has been successfully applied in real samples and already integrated in a filter paper-based assay, which enables potential fields use application featuring easy handling and cost-effectiveness.  相似文献   

3.
Development of simple, cost-effective, and sensitive fluorescence-based sensors for explosives implies broad applications in homeland security, military operations, and environmental and industrial safety control. However, the reported fluorescence sensory materials (e.g., polymers) usually respond to a class of analytes (e.g., nitroaromatics), rather than a single specific target. Hence, the selective detection of trace amounts of trinitrotoluene (TNT) still remains a big challenge for fluorescence-based sensors. Here we report the selective detection of TNT vapor using the nanoporous fibers fabricated by self-assembly of carbazole-based macrocyclic molecules. The nanoporosity allows for time-dependent diffusion of TNT molecules inside the material, resulting in further fluorescence quenching of the material after removal from the TNT vapor source. Under the same testing conditions, other common nitroaromatic explosives and oxidizing reagents did not demonstrate this postexposure fluorescence quenching; rather, a recovery of fluorescence was observed. The postexposure fluorescence quenching as well as the sensitivity is further enhanced by lowering the highest occupied molecular orbital (HOMO) level of the nanofiber building blocks. This in turn reduces the affinity for oxygen, thus allocating more interaction sites for TNT. Our results present a simple and novel way to achieve detection selectivity for TNT by creating nanoporosity and tuning molecular electronic structure, which when combined may be applied to other fluorescence sensor materials for selective detection of vapor analytes.  相似文献   

4.
In this work, we report the absorption and confinement of 2,4,6-trinitrotoluene (TNT) in porous metals (Ag, Ag/Al, and Ag/Cu), and the effect of the physical properties of the metal on the calorimetric properties of TNT using thermogravimetric analysis and differential scanning calorimetry. The surface area and pore size distribution of the confiners were calculated to determine their effect on both the onset temperature and the rate at which TNT volatilizes. Confinement of TNT into the mixed metal sponges was confirmed by scanning electron microscopy. Overall, this study provides an insight into the fundamental factors influencing the properties of energetic materials under confinement that could potentially allow for more controlled and reliable degradation techniques depending on the characteristics of the porous material.  相似文献   

5.
Detection of explosives is of utmost importance due to the threat to human security as a result of illegal transport and terrorist activities. Trinitrotoluene (TNT) is a widely used explosive in landmines and military operations that contaminates the environment and groundwater, posing a threat to human health. Achieving the detection of explosives at a sub-femtogram level using a molecular sensor is a challenge. Herein we demonstrate that a fluorescent organogelator exhibits superior detection capability for TNT in the gel form when compared to that in the solution state. The gel when coated on disposable paper strips detects TNT at a record attogram (ag, 10(-18) g) level (~12 ag/cm(2)) with a detection limit of 0.23 ppq. This is a simple and low-cost method for the detection of TNT on surfaces or in aqueous solutions in a contact mode, taking advantage of the unique molecular packing of an organogelator and the associated photophysical properties.  相似文献   

6.
The unimolecular decomposition reaction of TNT can in principle be used to design ways to either detect or remove TNT from the environment. Here, we report the results of a density functional theory study of possible ways to lower the reaction barrier for this decomposition process by ionization, so that decomposition and/or detection can occur at room temperature. We find that ionizing TNT lowers the reaction barrier for the initial step of this decomposition. We further show that a similar effect can occur if a positive moiety is bound to the TNT molecule. The positive charge produces a pronounced electron redistribution and dipole formation in TNT with minimal charge transfer from TNT to the positive moiety.  相似文献   

7.
Bromberg A  Mathies RA 《Electrophoresis》2004,25(12):1895-1900
A high-throughput homogeneous immunoassay for the sensitive detection of 2,4,6-trinitrotoluene (TNT) has been developed using radial capillary array electrophoresis microdevices. Samples consisting of equilibrium mixtures of anti-TNT antibody (Ab), fluorescein-labeled TNT, and various concentrations of unlabeled TNT were electrokinetically injected into 48 channels of a radial capillary array electrophoresis microchannel plate. The rapid electrophoretic separation allows us to analyze the equilibrium ratio formed by the competition between the labeled and the unlabeled TNT for Ab binding. The simultaneous parallel TNT separations facilitate determination of a calibration curve for the TNT assay, which has high sensitivity (LOD, 1 ng/mL) and a wide dynamic range (1-300 ng/mL).  相似文献   

8.
Titanate nanotubes (TNT) were proven to be efficient support for the immobilization of methylene blue (MB). UV–vis absorption and Fourier transform infrared spectra showed that the effect of MB absorbed on TNT was better than nanocrystalline anatase TiO2 (TNP). The quantity of MB absorbed onto TNT was found to be greater than that of TNP and the electrode modified with the MB–TNT film was more stable due to the strong interaction between TNT and MB as well. The absorption of MB on TNT was impacted by the pH value of the reaction solution for the change of surface charge. Electrochemical oxidation of dopamine (DA) at different electrodes was studied. The result showed that the MB–TNT composite film exhibited excellent catalytic activities to DA compared to those of pure TNT, which is a result of the great promotion of the electron-transfer rate between DA and the electrode surface by the MB–TNT film. Furthermore, the layer-by-layer self-assembly behavior of the electrochemically functional MB–TNT nanocomposite was also discussed after obtaining the stable colloid suspension of MB–TNT. The excellent electrochemical ability and the easy fabrication of layered nanocomposite make the MB–TNT nanocomposite very promising in electrochemistry study and new nanotube-based devices.  相似文献   

9.
We report a rapid, simple, and sensitive assay that is potentially amenable to high throughput screening for analysis of 2,4,6-trinitrotoluene (TNT) present in aqueous solutions. The assay is based on the change in fluorescence emission intensity of a fluorescently labeled TNT analogue pre-bound to an anti-TNT antibody that occurs upon its competitive displacement by TNT. The assay can be performed in both cuvette- and 96-well plate-based formats. TNT at a level of 0.5 micro g L(-1) (0.5 ppb) was detected in phosphate buffered saline; detection improved to 0.05 micro g L(-1) (0.05 ppb) for TNT dissolved in artificial seawater.  相似文献   

10.
Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials.  相似文献   

11.
Zou WS  Qiao JQ  Hu X  Ge X  Lian HZ 《Analytica chimica acta》2011,708(1-2):134-140
In this paper, cobalt (Co(2+))-doped (CoD) ZnS quantum dots (QDs) are synthesised in aqueous solution and characterised for the first time. L-Cysteine (L-Cys) ligands on the surface of CoD ZnS QDs can bind 2,4,6-trinitrotoluene (TNT) to form Meisenheimer complexes (MHCs) mainly through acid-base pairing interactions between TNT and L-Cys and the assistance of hydrogen bonding and electrostatic co-interactions among L-Cys intermolecules. The aggregation of inter-dots induced by MHCs greatly influenced the light scattering property of the QDs in aqueous solution, and Rayleigh scattering (RS) enhancement at the defect-related emission wavelengths as well as its left side was observed with the excitation of CoD ZnS QDs by violet light. RS enhancement, combining with the quenching of the orange transition emission induced by TNT anions, resulted in a change in the ratiometric visualisation of the system being investigated. A novel CoD ZnS QD-based hybrid ratiometric chemosensor has therefore been developed for simple and sensitive analysis of TNT in water. This ratiometric probe can assay down to 25 nM TNT in solution without interference from a matrix of real water sample and other nitroaromatic compounds. Because of the excellent electron-accepting ability and strong affinity of TNT to L-Cys on the surface of CoD ZnS QDs, the CoD photoluminescent nanomaterials reported here are well suited for detecting ultra-trace TNT and for distinguishing different nitro-compounds in aqueous solution.  相似文献   

12.
This study found that 1,2-ethylenediamine (EDA) as a primary amine could be modified onto the surface of citrate-stabilized gold nanoparticles (Au NPs), and the EDA-capped Au NPs were successfully used as an ultrasensitive optical probe for TNT detection. The strong donor–acceptor (D–A) interactions between EDA and trinitrotoluene (TNT) at the Au NP/solution interface induced significant aggregation of the EDA-capped Au NPs, and enabled to easily realize the direct colorimetric detection of ultratrace TNT. The results showed that such a color change was readily seen by the naked eye, and the colorimetric detection could be down to 400 pM level of TNT with excellent discrimination against other nitro compounds. UV–vis absorption spectroscopy was used to examine the TNT-induced changes in local surface plasmon resonance (LSPR) of EDA-capped Au NPs, and a new LSPR band at ca. 630 nm arose along with the addition of TNT, which produced a detection limit of TNT down to ca. 40 pM. Furthermore, dynamic light scattering measurements evidenced the ultratrace TNT-induced small changes in the size of the EDA-capped Au NPs, and realized the quick and accurate detection of TNT in 0.4 pM level. These results demonstrated the ultrahigh sensitivity of this optical probe for TNT detection. Moreover, this optical probe is sample, stable, low-cost, and these excellent properties make it quite promising for infield and rapid detection of TNT.  相似文献   

13.
Surface‐enhanced resonance Raman scattering (SERRS) is not realized for most molecules of interest. Here, we developed a new SERRS platform for the fast and sensitive detection of 2,4,6‐trinitrotoluene (TNT), a molecule with low Raman cross section. A cationic surfactant, cetylpyridinium chloride (CPC) was modified on the surface of silver sols (CP‐capped Ag). CPC not only acts as the surface‐seeking species to trap sulfite‐sulfonated TNT, but also undergoes complexation with it, resulting in the presence of two charge‐transfer bands at 467 and 530 nm, respectively. This chromophore absorbs the visible light that matches with the incident laser and plasmon resonance of Ag sols by the use of a 532.06 nm laser, and offered large resonance Raman enhancement. This SERRS platform evidenced a fast and accurate detection of TNT with a detection limit of 5×10?11 M under a low laser power (200 μW) and a short integration time (3 s). The CP‐capped Ag also provides remarkable sensitivity and reliable repeatability. This study provides a facile and reliable method for TNT detection and a viable idea for the SERS detection of various non‐resonant molecules.  相似文献   

14.
This report demonstrates a novel electrochemical method for fast and sensitive detection of ultra-trace 2,4,6-trinitrotoluene (TNT) based on modified electrodes by functionalized MWCNTs. To fabricate new kind of functionalized MWCNTs material sensitive to TNT, our work first theoretically investigated the interaction between triphenylene (TP) and TNT by calculating their electrostatic potentials, and secondly characterized this interaction by the fluorescence spectra. The functionalized MWCNTs of TP-MWCNTs were thoroughly characterized by fluorescence and UV-visible spectra, and by analysing these results, the interaction between TP and MWCNTs was also examined. Electrochemical experiment suggests, compared to MWCNTs- and TP- modified electrodes, TP-MWCNTs-modified electrodes result in both fast response and enhanced sensitivity to TNT detection. These results show the attachment of TP on MWCNTs leads to better sensing unit with more receptor site to TNT, associated with the coordinative recognition of TP and MWCNTs to TNT, finally result in the improvement of response and sensitivity. And this improved recognition process is attributed to the geometric and electrostatic complementarity between TP and TNT. The present study demonstrates TP-MWCNTs-modified electrode holds promising and important implications for the detection of ultra-trace TNT.  相似文献   

15.
Recent concern on international terrorism and weapons of mass destruction demands the development of novel analytical methods for identification and quantification of explosive molecules. In this article, we describe the development of high-performance immunosensors for detection of 2,4,6-trinitrotoluene (TNT), a prime component of the landmines and bombs used by terrorist and military forces. The immunosensors were constructed by physical adsorption and self-assembly methods, and their binding interactions with a monoclonal anti-TNT antibody were evaluated for TNT detection using the surface plasmon resonance technique. A home-made 2,4,6-trinitrophenyl-keyhole limpet hemocyanine conjugate was used for physical adsorption. A poly(ethylene glycol) hydrazine hydrochloride thiolate was used in the construction of self-assembled monolayer surface and was immobilized with trinitrophenyl-β-alanine by the amide coupling method. The immunosensors were highly selective, regenerable, rapid, and exhibited remarkable sensitivity down to the parts-per-trillion level for TNT by the indirect competitive inhibition principle.  相似文献   

16.
Liquid chromatography-mass spectrometry was used for the detection and identification of metabolites of 2,4,6-trinitrotoluene (TNT) in urine and blood. The metabolites were found in the urine of rats and in the blood of rabbits fed with TNT, in the urine of rats exposed to TNT by skin absorption and in the urine of TNT munition workers. The detected metabolites, formed by reduction processes, included 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2,4-diamino-6-nitrotoluene and 2,6-diamino-4-nitrotoluene, in addition to untransformed TNT.  相似文献   

17.
《Electroanalysis》2004,16(15):1232-1235
A polyphenol‐coated screen‐printed carbon electrode is used for highly sensitive voltammetric measurements of the 2,4,6‐trinitrotoluene (TNT) explosive in the presence of surface‐active substances. The permselective/protective polyphenol coating offers excellent resistance to surfactant fouling, while allowing facile transport of the target TNT. High levels of gelatin, humic acid and sodium dodecyl sulfate (SDS) (up to 50 mg/L) have negligible effects upon the square‐wave voltammetric TNT response. The TNT peak current and potential remain nearly the same in the presence of these organic macromolecules, as compared to substantial peak suppressions and shifts at the bare electrode. Control of the electropolymerization time was used for achieving the desired exclusion of interfering surface‐active macromolecules while allowing transport of the target TNT. The response for ppm levels of TNT is highly linear and stable for prolonged operations in the presence of surface‐active substances. By meeting the high sensitivity, selectivity, stability, portability and low‐cost demands, such voltammetric sensing holds great promise for field‐based voltammetric monitoring of nitroaromatic explosive compounds.  相似文献   

18.
There is an ongoing need for explosive detection strategies to uncover threats to human security including illegal transport and terrorist activities. The widespread military use of the explosive trinitrotoluene (TNT) for landmines poses another particular threat to human health in the form of contamination of the surrounding environment and groundwater. The detection of explosives, particularly at low picogram levels, by using a molecular sensor is seen as an important challenge. Herein, we report on the use of a fluorescent metal–organic framework hydrogel that exhibits a higher detection capability for TNT in the gel state compared with that in the solution state. A portable sensor prepared from filter paper coated by the hydrogel was able to detect TNT at the picogram level with a detection limit of 1.82 ppt (parts per trillon). Our results present a simple and new means to provide selective detection of TNT on a surface or in aqueous solution, as afforded by the unique molecular packing through the metal–organic framework structure in the gel formation and the associated photophysical properties. Furthermore, the rheological properties of the MOF‐based gel were similar to those of a typical hydrogel.  相似文献   

19.
We have developed a new immunosensor based on self-assembly chemistry for highly sensitive and label-free detection of 2,4,6-trinitrotoluene (TNT) using surface plasmon resonance (SPR). A monolayer of amine terminated poly(ethylene glycol) hydrazinehydrochloride (PEG-NH2) thiolate was constructed on an activated gold surface and immobilized with trinitrophenyl-β-alanine (TNPh-β-alanine) by amide coupling method. The binding interaction of a monoclonal anti-TNT Ab (M-TNT Ab) with TNPh-β-alanine immobilized thiolate monolayer surface was monitored and evaluated for detection of TNT based on the principle of indirect competitive immunoreaction. Here, the competition between the self-assembled TNT derivative and the TNT in solution for binding with antibody yields in the response signal that is inversely proportional to the concentration of TNT in the linear detection range. With the present immunoassay format, TNT could be detected in the concentration range from 0.008 ng/ml (8 ppt) to 30 ng/ml (30 ppb). The response time for an immunoreaction was 2 min and one immunocycle could be done with in 4 min including surface regeneration. Bound antibodies could be easily eluted from the self-assembled immunosurface at high recoveries (more than 100 cycles) using pepsin solution without any damage to the TNT derivatives immobilized on the surface. The compact self-assembled monolayer was highly stable and prevented the non-specific adsorption of proteins on the surface favoring error free measurement.  相似文献   

20.
Matz LM  Tornatore PS  Hill HH 《Talanta》2001,54(1):171-179
The use of ion mobility spectrometry systems to detect explosives in high security situations creates a need to determine compounds that interfere and may compromise accurate detection. This is the first study to identify possible interfering air contaminants common in airport settings by IMS. Seventeen suspected contaminants from four major sources were investigated. Due to the ionization selectivity gained by employing chloride reactant ion chemistry, only 7 of the 17 compounds showed an IMS response. Of those seven compounds, only 4,6-dinitro-o-cresol (4,6DNOC) was found to have a similar mobility to 2,4,6-trinitrotoluene (TNT) with K(o) values of 1.55 and 1.50 cm(2) V(-1) s(-1), respectively. Although baseline resolution between TNT and 4,6DNOC was not achieved, the drift time for TNT was still easily identified. Alkyl-nitrated phenols, due to acidic fog, responded the strongest in the IMS. The effect of contamination on TNT sensitivity was investigated. Charge competition between TNT and 2,4-dinitrophenol (2,4DNP) was found to occur and to effect TNT sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号