首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用ABEEM/MM模型研究水分子团簇(H2O)n (n=11~16)的性质   总被引:3,自引:0,他引:3  
应用ABEEM/MM 模型计算了较大的水分子团簇(H2O)n (n=11~16)的各种性质,如:优化的几何构型, 氢键个数, 结合能, 稳定性, ABEEM 电荷分布, 偶极矩, 以及结构参数、平均氢键个数和强度, 增加的团簇结合能等.结果表明,从立方体结构到笼状结构的过渡出现在n=12的水分子团簇中,随着类似于笼状结构特点的不断增强,五元环的富集程度有所增加.  相似文献   

2.
用密度泛函理论结合全电子自旋极化方法构建并优化出了最稳定的(Al16Ti) (n=0-3)离子团簇, 研究了其几何结构、稳定性和电子结构. 同时研究了水分子在(Al16Ti) (n=0-3)离子团簇表面的吸附结构和吸附能. 研究结果与纯(Al17Ti) (n=0-3)离子团簇的电子结构及其与H2O分子的相互作用规律做了对比. 通过电子最高占据轨道和最低空轨道的空间分布, 发现大部分的活性电子占据在Ti 原子位置, 少量电子根据曲率从大到小的顺序依次占据. 通过分析最稳定的(Al16TiH2O) (n=0-3)吸附化合物的几何结构可以看出, 水分子都倾向于吸附在Ti原子上, 并且为亲氧吸附. 在所有的吸附化合物中, (Al16TiH2O)+具有最短的平均O―H键长, 比孤立H2O分子中的O―H键约长0.0003 nm, 然后随着电子数的增加或减少, O―H键都会进一步被拉长. 研究结果表明, Al 团簇离子中Ti 原子的掺杂可以有效提高H2O分子的解离效率. 另外, 在金属团簇的几何结构效应与杂质效应共同出现时, 杂质的影响占据了主导地位.  相似文献   

3.
The kinetic-energy dependence for the reactions of Co(n)+ (n=2-20) with O2 is measured as a function of kinetic energy over a range of 0 to 10 eV in a guided ion-beam tandem mass spectrometer. A variety of Co(m)+, Co(m)O+, and Co(m)O2+ (m < or = n) product ions is observed, with the dioxide cluster ions dominating the products for all larger clusters. Reaction efficiencies of Co(n)+ cations with O2 are near unity for all but the dimer. Bond dissociation energies for both cobalt cluster oxides and dioxides are derived from threshold analysis of the energy dependence of the endothermic reactions using several different methods. These values show little dependence on cluster size for clusters larger than three atoms. The trends in this thermochemistry and the stabilities of oxygenated cobalt clusters are discussed. The bond energies of Co(n)+-O for larger clusters are found to be very close to the value for desorption of atomic oxygen from bulk-phase cobalt. Rate constants for O2 chemisorption on the cationic clusters are compared with results from previous work on cationic, anionic, and neutral cobalt clusters.  相似文献   

4.
The structures and energies of Be(n)Si(n) and Be(2n)Si(n) (n = 1-4) clusters have been examined in ab initio theoretical electronic structure calculations. Cluster geometries have been established in B3LYP/6-31G(2df) calculations and accurate relative energies determined by the G3XMP2 method. The two atoms readily bond to each other and to other atoms of their own kind. The result is a great variety of low-energy clusters in a variety of structural types.  相似文献   

5.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

6.
Tunable vacuum ultraviolet (VUV) photoionization studies of water clusters are performed using 10-14 eV synchrotron radiation and analyzed by reflectron time-of-flight (TOF) mass spectrometry. Photoionization efficiency (PIE) curves for protonated water clusters (H2O)(n)H+ are measured with 50 meV energy resolution. The appearance energies of a series of protonated water clusters are determined from the photoionization threshold for clusters composed of up to 79 molecules. These appearance energies represent an upper limit of the adiabatic ionization energy of the corresponding parent neutral water cluster in the supersonic molecular beam. The experimental results show a sharp drop in the appearance energy for the small neutral water clusters (from 12.62 +/- 0.05 to 10.94 +/- 0.06 eV, for H2O and (H2O)4, respectively), followed by a gradual decrease for clusters up to (H2O)23 converging to a value of 10.6 eV (+/-0.2 eV). The dissociation energy to remove a water molecule from the corresponding neutral water cluster is derived through thermodynamic cycles utilizing the dissociation energies of protonated water clusters reported previously in the literature. The experimental results show a gradual decrease of the dissociation energy for removal of one water molecule for small neutral water clusters (3 相似文献   

7.
Chlorine adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n=2-7) has been studied using the PW91PW91 density functional method. It was found that the adsorption of chlorine on the lowest-energy bare clusters does not always produce the lowest-energy complexes. In addition, the binding of chlorine can greatly change the geometries of the silver clusters in some cases. Among various possible adsorption sites, bridge site is energetically preferred for the neutral Ag(n) while top site is energetically more preferred for the anionic Ag(n) with n< or =6. For cationic clusters, adsorptions on bridge and face sites have similar binding energies, which are much larger than those on top sites. Natural bond orbital analyses show that irrespective of charge state, electrons always transfer from silver atoms to adsorbate and silver acts like alkali metals in the interaction with chlorine atom. Significant odd-even alternation patterns in the properties of the complexes have been observed: Even-electron clusters often have higher ionization energies, lower electron affinities, and higher dissociation energies than their odd-electron neighbors. It was also found that chlorine atoms bind more strongly with odd-electron bare clusters than with even-electron bare clusters. These patterns reveal that even-electron clusters are more stable than odd-electron clusters.  相似文献   

8.
应用相对论有效核势密度泛函理论计算方法研究了Cun-和CunCO-簇的平衡几何构型、稳定性、主要碎片化模式、CO吸附能及其团簇的光谱性质.计算结果表明,奇数簇Cun-的电离势比其相邻偶数簇Cun-的电离势大;奇数的Cu5CO-簇有最大的CO解离能.奇数铜簇阴离子相对较高的稳定性与近似浆汁模型的8电子电子闭壳层效应一致.计算得到的Cun-簇碎片化能量表明,较小Cun-的优势解离通道与其包含Cu原子数目的奇偶性有关,偶数的Cun-簇主要解离为Cu原子和Cun-1-,而奇数Cun-簇易以解离成铜的二聚物Cu2和Cun-2-.基于密度泛函理论计算,讨论了这些簇的静态极化率和CO吸附性质与簇大小的关系.  相似文献   

9.
在密度泛函理论框架下, 应用不同泛函计算了配合物Ni(CO)n(n=1~4)的平衡几何构型和振动频率. 考察了泛函和基组重叠误差对预测Ni—CO键解离能的影响. 计算结果表明, 用杂化泛函能得到与实验一致的优化几何构型和较合理的振动频率. 对Ni(CO)n(n=2~4)体系, 用“纯”泛函, 如BP86和BPW91, 可得到与CCSD(T)更符合、 并与实验值接近的解离能. 当解离产物出现单个金属原子或离子(如金属羰基配合物的完全解离)时, BSSE校正项的计算中应保持金属部分的电子结构一致. 只有考虑配体基组和不考虑配体基组两种情况下金属的电子构型与配合物中金属的构型一致时, 才能得到合理的BSSE校正, 从而预测合理的解离能.  相似文献   

10.
The molecular structures, electron affinities, and dissociation energies of the Si(n)H/Si(n)H- (n = 4-10) species have been examined via five hybrid and pure density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The three different types of neutral-anion energy separations presented in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first Si-H dissociation energies, D(e)(Si(n)H --> Si(n) + H) for neutral Si(n)H and D(e)(Si(n)H- --> Si(n)- + H) for anionic Si(n)H- species, have also been reported. The structures of the ground states of these clusters are traditional H-Si single-bond forms. The ground-state geometries of Si5H, Si6H, Si8H, and Si9H predicted by the DFT methods are different from previous calculations, such as those obtained by Car-Parrinello molecular dynamics and nonorthogonal tight-binding molecular dynamics schemes. The most reliable EA(ad) values obtained at the B3LYP level of theory are 2.59 (Si4H), 2.84 (Si5H), 2.86 (Si6H), 3.19 (Si7H), 3.14 (Si8H), 3.36 (Si9H), and 3.56 (Si10H) eV. The first dissociation energies (Si(n)H --> Si(n) + H) predicted by all of these methods are 2.20-2.29 (Si4H), 2.30-2.83 (Si5H), 2.12-2.41 (Si6H), 1.75-2.03 (Si7H), 2.41-2.72 (Si8H), 1.86-2.11 (Si9H), and 1.92-2.27 (Si10H) eV. For the negatively charged ion clusters (Si(n)H- --> Si(n)- + H), the dissociation energies predicted are 2.56-2.69 (Si4H-), 2.80-3.01 (Si5H-), 2.86-3.06 (Si6H-), 2.80-3.03 (Si7H-), 2.69-2.92 (Si8H-), 2.92-3.18 (Si9H-), and 2.89-3.25 (Si10H-) eV.  相似文献   

11.
The molecular structures of neutral Si n Li ( n = 2-8) species and their anions have been studied by means of the higher level of the Gaussian-3 (G3) techniques. The lowest energy structures of these clusters have been reported. The ground-state structures of neutral clusters are "attaching structures", in which the Li atom is bound to Si n clusters. The ground-state geometries of anions, however, are "substitutional structures", which is derived from Si n+1 by replacing a Si atom with a Li (-). The electron affinities of Si n Li and Si n have been presented. The theoretical electron affinities of Si n are in good agreement with the experiment data. The reliable electron affinities of Si n Li are predicted to be 1.87 eV for Si 2Li, 2.06 eV for Si 3Li, 2.01 eV for Si 4Li, 2.61 eV for Si 5Li, 2.36 eV for Si 6Li, 2.21 eV for Si 7Li, and 3.18 eV for Si 8Li. The dissociation energies of Li atom from the lowest energy structures of Si n Li and Si atom from Si n clusters have also been estimated respectively to examine relative stabilities.  相似文献   

12.
A comparative study of the adsorption of an O2 molecule on pure Au(n+1)+ and doped MAu(n)+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based on norm-conserving pseudo-potentials and numerical basis sets. For pure Au4 +, Au6+, and Au7+ clusters, the O2 molecule is adsorbed preferably on top of low coordinated Au atoms, with an adsorption energy smaller than 0.5 eV. Instead, for Au5+ and Au8+, bridge adsorption sites are preferred with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au(n)+ is almost unperturbed after O2 adsorption. The electronic charge flows towards O2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O2 is adsorbed on top of Au atoms, and both the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O2 increases. On the other hand, we studied the adsorption of an O2 molecule on doped MAu(n)+ clusters, leading to the formation of (MAu(n)O2+) ad complexes with different equilibrium configurations. The highest adsorption energy was obtained when both atoms of O2 bind on top of the M impurity, and it is larger for Ti doped clusters than for Fe doped clusters, showing an odd-even effect trend with size n, which is opposite for Ti as compared to Fe complexes. For those adsorption configurations of (MAu(n)O2+) ad involving only Au sites, the adsorption energy is similar to or smaller than that for similar configurations of Au(n)+1O2 + complexes. However, the highest adsorption energy of (MAu(n)O2+) ad is higher than that for (Au(n)+1O2+) ad by a factor of approximately 4.0 (1.2) for M = Ti (M = Fe). The trends with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAu(n)O2+) ad complexes with the highest O2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti-parallel) spin coupling of MAu(n)+ clusters and O2 molecules. Finally, we obtained the minimum energy equilibrium structure of complexes (Au(n)O2+) dis and (MAu(n)O2+) dis containing two separated O atoms bonded at different sites of Au(n)+ and MAu(n)+ clusters, respectively. For (MAu(n)O2 (+)) dis, the equilibrium configuration with the highest adsorption energy is stable against separation in MAu(n)+ and O2 fragments, respectively. Instead, for (Au(n)O2+) dis, only the complex n = 6 is stable against separation in Au(n)+ and O2 fragments. The maximum separation energy of (MAu(n)O2+) dis is higher than the O2 adsorption energy of (MAu(n)O2+) ad complexes by factors of approximately 1.6 (2.5), 1.6 (1.7), 1.5 (2.4), 1.5 (1.3), and 1.6 (1.8) for M = Ti (Fe) complexes in the range n = 3-7, respectively.  相似文献   

13.
ABEEM/MM model has been applied to compute the various properties characterizing water clusters (H2O)n(n = 7-10), such as optimized geometries, the hydrogen bonds number, cluster interaction energies, stabilities, ABEEM charge distributions, dipole moments, structural parameters, and so on, and to describe the transition reflected by the hexamer region from two-dimensional (from dimer to pentamer) to three-dimensional structures (for clusters larger than the hexamer).  相似文献   

14.
The geometries, stabilities, and electronic and magnetic properties of small-sized Zr(n) (n=2-8) clusters with different spin configurations were systematically investigated by using density functional approach. Emphasis is placed on studies that focus on the total energies, equilibrium geometries, growth-pattern behaviors, fragmentation energies, and magnetic characteristics of zirconium clusters. The optimized geometries show that the large-sized low-lying Zr(n) (n=5-8) clusters become three-dimensional structures. Particularly, the relative stabilities of Zr(n) clusters in terms of the calculated fragmentation energies and second-order difference of energies are discussed, exhibiting that the magic numbers of stabilities are n=2, 5, and 7 and that the pentagonal bipyramidal D(5h) Zr(7) geometry is the most stable isomer and a nonmagnetic ground state. Furthermore, the investigated magnetic moments confirm that the atomic averaged magnetic moments of the Zr(n) (n not equal to 2) display an odd-even oscillation features and the tetrahedron C(s) Zr(4) structure has the biggest atomic averaged magnetic moment of 1.5 mu(B)/at. In addition, the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital gaps indicate that the Zr(n) (n=2 and 7) clusters have dramatically enhanced chemical stabilities.  相似文献   

15.
1 INTRODUCTION In the latest ten years, the structure and function of water clusters have captured the interest of chemists. One of the most important study objects in water cluster is to describe the behavior of water so- lution quantitatively at molecule level, which will pave the way for the solving of some environmental and other scientific problems, such as the formation of acid rain and nucleation mechanism of little water drop. Besides, weak interaction in water clusters could be al…  相似文献   

16.
A sub-monolayer of atomic sodium was deposited on a LiF(001) surface at 40 K. The adsorbed sodium exists at the surface as single atoms and clusters. The surface was dosed with 1 L of HF, to form adsorbed (HF)2...Na(n) (n=1,2,3,...) complexes, which were then irradiated by 640 nm laser light, to induce charge-transfer reaction. The reaction-product atomic H(g) was observed leaving the surface by two-color Rydberg-atom time-of-flight (TOF) spectroscopy. The TOF spectrum of the desorbed H atoms contained two components; a "fast" component with a maximum at approximately 0.85 eV, and a "slow" component with a maximum at 0.45 eV. These two components were attributed to photoreaction on adsorbed single atoms and clusters of sodium, respectively. The fast component exhibited a structure (48+/-17 meV spacing) near the high-energy end of spectrum. This structure was attributed to vibration of NaFHF photoproduct residing on the surface. The cross section of the harpooning event in the Na...(HF)2 adsorbed complex was determined as (9.1+/-2.0)x10(-19) cm(2). To interpret the experimental vibrational structure and the relative energies of the fast and slow components of the TOF spectrum, high-level ab initio calculations were performed for reactants Na(n)...(HF)(m) (n,m=1,2) and reaction products Na(n)F(m)H(m-1). The calculated NaF-HF and Na-Na(HF)(2) bond dissociation energies indicated that photoexcitation of the precursor complexes led not only to ejection of H atoms, but also to dissociation of the Na(n)...(HF)(2) (n=1,2) species through cleavage of the NaF-HF and Na-Na(HF)(2) bonds.  相似文献   

17.
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.  相似文献   

18.
The structures, binding energies, and electronic properties of one oxygen atom (O) and two oxygen atoms (2O) adsorption on silicon clusters Si(n) with n ranging from 5 to 10 are studied systematically by ab initio calculations. Twelve stable structures are obtained, two of which are in agreement with those reported in previous literature and the others are new structures that have not been proposed before. Further investigations on the fragmentations of Si(n)O and Si(n)O2 (n = 5-10) clusters indicate that the pathways Si(n)O --> Si(n-1) + SiO and Si(n)O2 --> Si(n-2) + Si2O2 are most favorable from thermodynamic viewpoint. Among the studied silicon oxide clusters, Si8O, Si9O, Si5O2 and Si8O2 correspond to large adsorption energies of silicon clusters with respect to O or 2O, while Si8O, with the smallest dissociation energy, has a tendency to separate into Si7 + SiO. Using the recently developed quasi-atomic minimal-basis-orbital method, we have also calculated the unsaturated valences of the neutral Si(n) clusters. Our calculation results show that the Si atoms which have the largest unsaturated valences are more attractive to O atom. Placing O atom right around the Si atoms with the largest unsaturated valences usually leads to stable structures of the silicon oxide clusters.  相似文献   

19.
The cross sections for electron scattering on OH-(H2O)n for n = 0-4 were measured from threshold to approximately 50 eV. All detachment cross sections were found to follow the classical prediction given earlier [Phys. Rev. Lett. 74, 892 (1995)] with a threshold energy for electron-impact detachment that increased upon sequential hydration, yielding values in the range from 4.5 eV +/- 0.2 eV for OH- to 12.10 eV +/- 0.5 eV for OH-(H2O)4. For n > or = 1, we found that approximately 80% of the total reaction events lead to electron detachment plus total dissociation of the clusters into the constituent molecules of OH and H2O. Finally, we observed resonances in the cross sections for OH-(H2O)3 and for OH-(H2O)4. The resonances were located at approximately 15 eV and were ascribed to the formation of dianions in excited states.  相似文献   

20.
Sun J  Lu WC  Zhang W  Zhao LZ  Li ZS  Sun CC 《Inorganic chemistry》2008,47(7):2274-2279
The structures and stabilities of (Al2O3)n (n = 1-10 and 30) clusters were studied by means of first principles calculations. The calculated results reveal that the global minima of small (Al2O3)n (n = 1-5) clusters are cage structures with high symmetries, in which Al and O atoms are three- and two-coordinated, respectively, and are linked to neighbors via single bonds. Beyond (Al2O3)5, we calculated both cage and cage-dimer structures for (Al2O3)n (n = 6-10), and the results show that, at this size range, cage-dimer structures are more stable than cage structures. Furthermore, an onion-like motif for (Al2O3)10 was studied, and it is interesting to find that, at this size, the onion structure is more favorable than cage and cage-dimer structures. For large clusters, a shell structure of Al60O90 is suggested. Electronic properties and calculations on hydrogen adsorption of these aluminum oxide structures are reported, and we discuss their possible use as hydrogen storage materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号