首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdenum and tungsten tetracarbonyl compounds of the cis-[M(CO)4L2] (M=Mo, L2=apmi, appi, apmi-Ph, appi-2-OMe, apmi-1-Me-1-Ph, bpmi, bppi, bpmi-Ph, bppi-2-OMe, bpmi-1-Me-1-Ph, bpai, M=W, L2= apmi, appi, appi-2-OMe, bppi, bppi-2-OMe) type have been prepared and characterised by 1H n.m.r., i.r., FAB-MS spectroscopy and by microanalysis.  相似文献   

2.
The synthesis of an air‐stable series of Pd0 complexes with unsymmetric bidentate N‐pyridine N‐heterocyclic carbene ligands has been described. The carbenes were generated by synthesis of the silver(I) complexes from the imidazolium salts, followed by transmetallation of the C‐N ligands to obtain the target electron‐rich zerovalent palladium compounds. The bidentate coordination behaviour of the ligands was confirmed by 1H, 13C NMR and X‐ray spectroscopy. The complexes are active precatalysts for the selective transfer semihydrogenation of alkynes to Z‐alkenes, with selectivities up to 99%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Acyclic pyridine-2-carboxamide- and thioether-containing hexadentate ligand 1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpctb), in its deprotonated form, has afforded purple low-spin (S = 0) iron(II) complex [Fe(bpctb)] (1). A new ligand, the pyrazine derivative of H(2)bpctb, 1,4-bis[o-(pyrazine-2-carboxamidophenyl)]-1,4-dithiobutane (H(2)bpzctb), has been synthesized which has furnished the isolation of purple iron(II) complex [Fe(bpzctb)].CH(2)Cl(2) (4) (S = 0). Chemical oxidation of 1 by [(eta(5)-C(5)H(5))(2)Fe][PF(6)] or [Ce(NO(3))(6)][NH(4)](2) led to the isolation of low-spin (S = 1/2) green Fe(III) complexes [Fe(bpctb)][PF(6)] (2) or [Fe(bpctb)][NO(3)].H(2)O (3), and oxidation of 4 by [Ce(NO(3))(6)][NH(4)](2) afforded [Fe(bpzctb)][NO(3)].H(2)O (5) (S = 1/2). X-ray crystal structures of 1 and 4 revealed that (i) in each case the ligand coordinates in a hexadentate mode and (ii) bpzctb(2-) binds more strongly than bpctb(2-), affording distorted octahedral M(II)N(2)(pyridine/pyrazine)N'(2)(amide)S(2)(thioether) coordination. To the best of our knowledge, 1 and 4 are the first examples of six-coordinate low-spin Fe(II) complexes of deprotonated pyridine/pyrazine amide ligands having appended thioether functionality. The Fe(III) complexes display rhombic EPR spectra. Each complex exhibits in CH(2)Cl(2)/MeCN a reversible to quasireversible cyclic voltammetric response, corresponding to the Fe(III)-Fe(II) redox process. The E(1/2) value of 4 is more anodic by approximately 0.2 V than that of 1, attesting that compared to pyridine, pyrazine is a better stabilizer of iron(II). Moreover, the E(1/2) value of 1 is significantly higher (approximately 1.5 V) than that reported for six-coordinate Fe(II)/Fe(III) complexes of the tridentate pyridine-2-carboxamide ligand incorporating thiolate donor site.  相似文献   

4.
This paper reports the investigation on the thermal stability of new complexes with mixed ligands of the type [Cd(NN)(C3H3O2)2(H2O)m]·nH2O [(1) NN: 1,10-phenantroline, m = 1, n = 0; (2) NN: 2,2′-bipyridine, m = 0, n = 1.5 and (C3H3O2): acrylate anion]. The IR data indicate a bidentate coordination mode for both heterocyclic amine and acrylate. The in vitro qualitative and quantitative antimicrobial activity assays showed that the complexes exhibited variable antimicrobial activity against planktonic as well as biofilm embedded Gram-negative (Escherichia coli, Klebsiella sp., Proteus sp., Salmonella sp., Shigella sp., Acinetobacter boumani, Pseudomonas aeruginosa), Gram-positive (Bacillus subtilis, Staphylococcus aureus) and fungal (Candida albicans) strains, reference and isolated ones from the hospital environment. The thermal behaviour steps were investigated in synthetic air flow. The thermal transformations are complex processes according to TG and DTA curves including dehydration, amine as well as acrylate thermolysis. The final products of decomposition are the most stable metal oxides.  相似文献   

5.
[CoCl2{N,N′-Te2(NtBu)4}] (1) was obtained in good yields by the reaction of equimolar amounts of (tBu)NTe(μ-NtBu)2TeN(tBu) and CoCl2 in toluene under an argon atmosphere. The crystal structure of 1·CH2Cl2 showed that the dimeric tellurium diimide ligand is N,N′-chelated to cobalt. The related reaction of Se(NtBu)2 and CoCl2 affords a green product tentatively identified as a 1:1 adduct [CoCl2{N,N′-Se(NtBu)2}] (CHN analysis). However, recrystallization from thf produces the ion-separated complex [Co2(μ-Cl)3{N,N′-Se(NtBu)2}2(thf)2][CoCl3{NH2(tBu)}]·1½thf (2·1½thf), in which the monomeric selenium diimide ligand is N,N′-chelated to cobalt in the cation. A pathway for the formation of 2 from [CoCl2{N,N′-Se(NtBu)2}] in thf is proposed.  相似文献   

6.
Reactions of a dinuclear metal complex in the form of dirhodium(II) tetra(trifluoroacetate), [Rh(2)(O(2)CCF(3))(4)] (1), with a number of strong N-donor ligands having functional groups rigidly oriented at different directing angles have been found to yield supramolecular architectures of differing complexity. All structures have been established by X-ray crystallography. From reaction of 1 with neutral tris(4'-pyridyl)methylsilane ligand, CH(3)Si(C(5)H(4)N)(3) (L1), a discrete pyramid-shaped hexanuclear complex [[Rh(2)(O(2)CCF(3))(4)](3)CH(3)Si(C(5)H(4)N)(3)(eta(1)-C(6)H(6))(3)].C(6)H(6) (2.C(6)H(6)) has been isolated from benzene. In 2 three molecules of 1 are strongly coordinated to one L1 ligand at only one axial position of each dirhodium unit at the Rh-N distances of 2.152(6) A. The second rhodium atom of each dimetal complex in 2 weakly coordinates a benzene molecule with an Rh-C distance of 2.69(2) A. A supramolecular complex of the composition [[Rh(2)(O(2)CCF(3))(4)](2)(C(6)H(5))(2)Si(C(5)H(4)N)(2)] (3) has been prepared by reacting the dinuclear units 1 with a potentially bidentate ligand, bis(4'-pyridyl)diphenylsilane, (C(6)H(5))(2)Si(C(5)H(4)N)(2) (L2), having two pyridyl groups rigidly oriented at 109 degrees. In 3, one L2 ligand coordinates two dirhodium molecules 1 through their axial positions with the Rh-N distance of 2.150(5) A. An interesting extended 2D layered motif is formed by additional contacts of open axial positions of dirhodium units with phenyl groups of the neighboring ligands at Rh-C distances which average to 2.88(1) A. A supramolecular compound of the composition [[Rh(2)(O(2)CCF(3))(4)](3)(HO)C(C(5)H(4)N)(3)(eta(1)-C(6)H(6))].(1)/(2)C(6)H(6) (4.(1)/(2)C(6)H(6)) has been formed when linear dirhodium units 1 were reacted with tris(4'-pyridyl)methanol (L3) having tetrahedral directing angles that average to 110 degrees. A building block in the solid structure of 4 is a hexanuclear molecule in which one L3 ligand binds three dimetal units of 1 through N atoms of pyridyl groups at the average Rh-N distance of 2.143(7) A. A unique extended pseudo-3D structure in 4 is created by additional Rh-O coordination bonds as well as by weak metal-arene interactions.  相似文献   

7.
Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the self-association, G-quadruplex DNA binding, and selectivity of a series of perylene diimides (PDIs) (PIPER, Tel01, Tel11, Tel12, and Tel18) or benzannulated perylene diimide ligands (Tel34 and Tel32). Fluorescence and resonance light scattering spectra of Tel01, Tel12, Tel32, and Tel34 reveal that these analogs undergo self-association in solution. UV-Vis and fluorescence titrations with G-quadruplex, duplex, or single-stranded DNA demonstrate that all the analogs, with the exception of Tel32, bind to G-quadruplex DNA, with those PDIs that are self-associated in solution showing the highest degree of selectivity for binding G-quadruplex DNA. Parallel ESI-MS analysis of the stoichiometries demonstrates the ability of the ligands, with the exception of Tel32, to bind to G-quadruplex DNA. While most ligands show major 1:1 and 2:1 binding stoichiometries as expected in the case of end-stacking, interestingly, three of the most quadruplex-selective ligands show a different behavior. Tel01 forms 3:1 complexes, while Tel12 and Tel32 only form 1:1 complexes. Collisional activation dissociation patterns are compatible with ligand binding to G-quadruplex DNA via stacking on the ends of the terminal G-tetrads. Experiments with duplex and single strand DNA were performed to assess the binding selectivities of the ligands. PIPER, Tel11, and Tel18 demonstrated extensive complexation with duplex DNA, while Tel11 and Tel18 bound to single strand DNA, confirming the lack of selectivity of these two ligands. Our results indicate that Tel01, Tel12, and Tel34 are the most selective for G-quadruplex DNA.  相似文献   

8.
The reaction of equimolar quantities of trans-[ReOCl3(PPh3)2] and 8-hydroxyquinoline (Hhqn) in benzene led to the isolation of the six-coordinate complex [ReOCl2(hqn)(PPh3)] (1). With 2-pyridine-ethanol (Hhep) the compound [ReOCl2(hep)(PPh3)] (2) was obtained. Both hqn and hep ligands act as monoanionic bidentate N,O-donor chelates. Although the two complexes are very similar, there are some significant differences in certain bond distances and angles in them. Both complexes contain the nearly linear trans O=Re–O axis, with this angle equal to 160.9(2)° and 167.8(1)° in 1 and 2, respectively.  相似文献   

9.
A series of cationic Rh(I) carbonyl complexes of the form [Rh(CO)(L)]PF6 (where L = 2,6-bis (alkylimidazol-2-ylidene)-pyridine; alkyl = Me (1a), Et (1b), CH2Ph (1c)) have been prepared by the reactions of [Rh(CO)2(OAc)]2 with diimidazolium pyridine salts in the presence of NEt3. The ν(CO) values for 1 are ca. 1982 cm−1, indicating that the N-heterocyclic carbene ligands impart high electron density on the Rh(I) centres, despite the overall cationic charge. Each of the Rh(I) complexes reacts with MeI to form two isomeric Rh(III) methyl species, and a third unidentified species. Kinetic measurements on the MeI oxidative addition reactions give second-order rate constants (MeCN, 25 °C) of 0.0927, 0.0633 and 0.0277 M−1 s−1 for 1a, 1b and 1c, respectively. Comparison of these data with those for related Rh(I) carbonyl complexes shows that 1 have remarkably high nucleophilicity for cationic species.  相似文献   

10.
In solution, (E) to (Z)-isomerism is facile both in 3-(9-anthracenyl)-1-(pyridin-4-yl)propenone, 2, and in its silver(I) complex [Ag(2)(2)](+). The crystal structures of (E)-2, (Z)-2 and [Ag{(E)-2}(2)][SbF(6)] are presented, and the roles of edge-to-face and face-to-face π-interactions in the lattice are discussed. Solution NMR spectroscopic data suggest that the driving force for (E) to (Z) isomerization is intramolecular π-stacking of the pyridine and anthracene domains. The reversed enone 3-(9-anthracenyl)-1-(pyridin-4-yl)propen-3-one, (E)-3, and the silver(I) complex [Ag{(E)-3}(2)][SbF(6)] have been prepared and characterized, including a single crystal X-ray determination of the latter. Surprisingly, no π-stacking between anthracene or pyridine domains is observed in the solid state, and the crystal packing is dominated by Ag···F, CH(anthracene)···π-pyridine and CH···F interactions. In contrast to (E)-2 and [Ag{(E)-2}(2)](+), neither (E)-3 nor [Ag{(E)-3}(2)](+) undergoes photoisomerization in solution.  相似文献   

11.
Oh M  Stern CL  Mirkin CA 《Inorganic chemistry》2005,44(8):2647-2653
Coordination polymers and a macrocycle formed from the reactions between flexible bis(2-pyridyl) ligands and AgCF(3)SO(3) are reported. The type of structure formed depends on the choice of ligand and the stoichiometry of the reaction. When 1 equiv of 1,4-bis(pyridin-2-ylmethoxy)benzene (L2), 4,4'-bis(pyridin-2-ylmethoxy)biphenyl (L4), or bis((4-pyridin-2-ylmethoxy)phenyl)methane (L5) is used, 1D chain coordination polymers held together via Ag-N bonds are generated. When a 2:1 ratio of L2 and silver ion is used, a 2D porous network is formed. The reaction between silver ions with a mixture of ligands (L1 and L2 in 1:1 ratio, L1 = 1,4-bis((pyridin-2-yl-methyl)thio)benzene) results in a novel 1D ABAB type coordination copolymer where L1 and L2 act as a bis-bidentate and a bis-monodentate ligand, respectively. The reaction of 1-(pyridin-2-ylmethoxy)-4-((pyridin-2-yl-methyl)thio)benzene (L3) with silver ions in a 1:1 ratio gives a bimetallic macrocycle rather than a polymeric species. Structural analyses of the polymeric compounds suggest that interactions between the aromatic rings play a significant role in stabilizing the polymeric structures.  相似文献   

12.
Using density functional theory, we have theoretically studied various kinds of complexes of cyclopentadienyl and dicyclopentadienyl ligands with zinc and cadmium atoms of oxidation state +1. We first find that a sandwich complex Cp-Zn-Zn-Cp that was recently identified by Resta et al, (Science 2004, 305, 1136) has a large overall binding energy (=-3.19 eV), where Cp denotes the pentamethyl cyclopentadienyl group. In addition, Cp-Zn-Zn-Cp is found to have a binding energy even larger by 0.93 eV, where Cp is a cyclopentadienyl ligand without methyl groups attached. Electronic structure analysis shows accumulation of electron density between Zn atoms, confirming the existence of Zn-Zn bond that is as strong as typical transition metal-halide bonds. In addition, our calculation suggests the possible existence of similar complexes Cp-Zn-Cd-Cp and Cp-Zn-Cd-Cp with a Zn-Cd bond not known thus far. Furthermore, study on the dimetallic complexes of dicyclopentadienyl ligands also predicts results which hold potential application to organometallic chemistry and organic synthesis: (a) Complexes involving a stiff ligand Dp can presumably exist in the form of dimerized sandwich complexes Dp-2M(1)-2M(2)-Dp (M(1), M(2) = Zn, Cd) with two metal-metal bonds. Their overall binding energies amount to -1.84 to -3.48 eV depending upon the kinds of metallic atoms, the strongest binding corresponding to dizinc complex. (b) Complexes involving more flexible ligand Ep can also form similar sandwich complexes Ep-2M(1)-2M(2)-Ep, but with much larger overall binding energies (=-4.97 to -7.09 eV). In addition, they can also exist in the form of nonsandwich complexes M(1)-Ep-M(2) involving only one ligand. Unlike most of dimetallic complexes of other transition metals, syn conformations are found to be exceptionally stable due to the formation of M(1)-M(2) bonds. Careful electronic structure analysis gives deep insight into the nature of observed phenomena.  相似文献   

13.
14.
A theoretical study of the enantiomer interconversion pathway relevant to racemization reactions of hexacoordinate transition-metal complexes is presented based on density functional calculations. The potential-energy surface for the trigonal twist pathway of the [Zr(SH)(6)](2-) model compound has been explored. The optimum structure reproduces, to a very good approximation, the experimental geometry of the analogous compound in which the thiolato groups have C(6)H(4)-4-OMe substituents instead of H atoms. A barrier of about 19 kcal mol(-1) is estimated for the racemization of [Zr(SH)(6)](2-) and exploratory calculations for [Zr(SC(6)H(4)-4-OMe)(6)](2-) indicate that a larger barrier should be expected. For the chiral homoleptic organometallic complexes [ZrMe(6)](2-) and [RhMe(6)](3-) no significant racemization barrier is expected.  相似文献   

15.
Six new coordination complexes, [Cd(η 2-OOCCH=(CH3)CFc)2(bix)]2·(CH3OH)0.5 (1), [Zn(η 2-OOCCH=(CH3)CFc)(η 1-OOCCH=(CH3)CFc)(bix)]2·(H2O)0.5 (2), [Zn(η 2-OOCCH=(CH3)CFc)2(pbbm)]2·(CH3OH)2 (3), {[Mn(η 1-OOCCH=(CH3)CFc)2(bbbm)(H2O)2]·(CH3OH)3}n (4), {[Cd(η 1-OOCCH=(CH3)CFc)2(bbbm)]·(CH3OH)2}n (5), and [Cd(η 2-OOCCH=(CH3)CFc)2(pmbbm)]n (6) {Fc?=?(η 5-C5H4)Fe(η 5-C5H4), bix?=?1,4[bis(imidazol-1-ylmethyl)benzene], pbbm?=?1,1′-[(1,4-propanediyl)bis-1H-benzimidazole], bbbm?=?1,1′-[(1,4-butanediyl)bis-1H-benzimidazole)], pmbbm?=?1,1′-[(1,4-pentanediyl)bis-1H-benzimidazole]}, were prepared and characterized. X-ray crystallographic analysis reveals that 1–3 are dimers bridged by bix and pbbm. Complexes 4–6 are one-dimensional (1-D) structures bridged by bbbm and pmbbm, respectively. Various ππ interactions were discovered in 1–6 that make significant contributions to molecular self-assembly. Solution differential pulse voltammetry of 1–6 indicates that the half-wave potentials of the ferrocenyl moieties in these complexes shift to positive potential compared with that of 3-ferrocenyl-2-crotonic acid.  相似文献   

16.
R. G. Schultz 《Tetrahedron》1964,20(12):2809-2813
A series of π-allylic palladium complexes has been prepared directly from allene. The polarity of the solvents used in the preparations has been found to have a significant effect upon the structure and composition of these complexes. NMR data in support of the proposed structure are tabulated.  相似文献   

17.
The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using “green” chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by “green” chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.  相似文献   

18.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

19.
The formation of self-assembly complexes between the ligands 1 (SS) and 2 (RR) and terbium or europium was undertaken and shown (using various spectroscopic titrations) to give rise to the exclusive formation of 2:1 (L:Ln) stoichiometry and not the anticipated 3:1 stoichiometry.  相似文献   

20.
The iron(II) complexes and with pentadentate pyridyl ligands are stable under physiological conditions and exhibit higher cytotoxicities toward a series of human carcinoma cell lines than cisplatin; can significantly increase intracellular oxidant levels, cleave supercoiled plasmid DNA in vitro without addition of a reductant and induce apoptotic cell death in human cervical epithelioid carcinoma cells (HeLa) as observed in flow cytometric studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号