首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report computational investigations on the mechanism and the selectivity of Pd-catalyzed allylic alkylation of γ-valerolactone. Density functional calculations using the B3LYP functional are performed on the selectivity-determining nucleophilic addition step of this reaction. The B3LYP results of commonly assumed pathways fail to reproduce the observed selectivity of the reaction. Therefore, alternative pathways are considered for the nucleophilic addition step, to explain the experimentally established role of the additives LiCl and lithium diisopropyl amide (LDA) in the Pd-catalyzed reaction. These pathways involve different approaches of the enolate toward the η(3) -allylpalladium complex that are mainly guided by stabilizing Cl(δ-) ???Li(δ+) ???O(enolate) interactions in the transition state. In the calculations, the experimentally observed trans-product selectivity for the prototypical reaction with (S)-BINAP ligands is found only when assuming the addition of a "mixed" Li-enolate/LiCl adduct to the η(3) -allylpalladium complex. This mechanism provides a reasonable explanation for the experimental results and sheds light on the role of LiCl in the reaction. The analysis of the different transition-state models allows us to identify steric and electronic factors that stabilize or destabilize the relevant diastereomeric transition states. Calculations for different combinations of substrates (γ-valerolactone and δ-caprolactone) and catalysts (with (R)- and (S)-BINAP ligands) reproduce the experimentally observed selectivities well and thus provide further support for the proposed mechanism.  相似文献   

2.
Pd-catalyzed asymmetric allylic alkylation of the glycine imino ester 1a has been developed using a chiral quaternary ammonium salt 3d without chiral phosphine ligands. The proper choice of the achiral Pd ligand, P(OPh)3, is important to achieve high enantioselectivity. By this method with the dual catalysts, numerous enantiomerically enriched alpha-allylic amino acids 4a-h could be prepared with comparable to higher enantioselectivity than that of the conventional asymmetric alkylation of 1a. In addition, the Pd-catalyzed reaction of 1a with 1-phenyl-2-propenyl acetate 2i afforded the branch product 6 with high enantio- and diastereoselectivity (>95% de, 85% ee).  相似文献   

3.
Amino acid‐derived chiral imidazolium salts, each bearing a pyridine ring, were developed as N‐heterocyclic carbene ligands. The copper‐catalyzed asymmetric alkylation of various N‐sulfonylimines with dialkylzinc reagents in the presence of these chiral imidazolium salts afforded the corresponding alkylated products with high enantioselectivity (up to 99 % ee). The addition of HMPA to the reaction mixture as a co‐solvent is critical in terms of chemical yield and enantioselectivity. A wide range of N‐sulfonylimines and dialkylzinc reagents were found to be applicable to this reaction.  相似文献   

4.
The lithium anionic species generated from O-alkanoylTEMPOs upon treatment with LDA were first employed as a nucleophile for alkylation, Michael addition, direct aldol reaction, and others. The alkylation occurred smoothly at the methylene carbon, and no alkylation was found in the isobutyryl analogue, while silylation was scarcely attainable. Substitutions of the heteroatom were achieved by reaction with PhSSPh and DEAD. The reactivity of these anionic species is successfully extended to aldol reactions in which moderate anti or syn selectivity was executed with propionyl derivatives. Tandem Michael addition of lithium amide followed by aldol reaction was performed on the O-crotonoylTEMPOs.  相似文献   

5.
Enantioselective deprotonation of 4-tert-butylcyclohexanone was examined using 1-phenylethylamine- and 1-(1-naphthyl)ethylamine-derived chiral lithium amides having an alkyl or a fluoroalkyl substituent at the amide nitrogen. The lithium amides having a 2,2,2-trifluoroethyl group on the amide nitrogen are easily accessible in both enantiomeric forms, and were found to induce good enantioselectivity in the present reaction.  相似文献   

6.
The effect of lithium halides on the enantioselectivity of the addition of methyllithium on o-tolualdehyde, in the presence of chiral lithium amides derived from chiral 3-aminopyrrolidines (3APLi), has been investigated. The enantiomeric excess of the resulting 1-o-tolylethanol was found to drop upon addition of significant amounts of LiCl, introduced before the aldehyde. The competitive affinity between the lithium amide, the methyllithium, and the lithium halides in THF was examined by multinuclear NMR spectroscopy and DFT calculations. The results showed that the original mixed aggregate of the chiral lithium amide and methyllithium is rapidly, totally, and irreversibly replaced by a similar 1:1 complex involving one lithium chloride or bromide and one lithium amide. While the MeLi/LiX substitution occurs with some degree of epimerization at the nitrogen for the endo-MeLi:3APLi complex, it is mostly stereospecific for the exo-type arrangements of the aggregate. The thermodynamic preference for mixed aggregates between 3APLi and LiX was confirmed by static DFT calculations: the data show that the LiCl and LiBr aggregates are more stable than their MeLi counterparts by more than 10 kcal.mol(-1) provided THF is explicitly taken into account. These results suggest that a sequestration of the source of chirality by the lithium halides is at the origin of the detrimental effect of these additives on the ee of the model reaction.  相似文献   

7.
The asymmetric reaction of a lithium enolate generated from a BHA (2, 6-di-tert-buty-4-methoxyphenyl) propanoate was allowed to react with benzaldehyde in the presence of a diether-type chiral ligand affording the corresponding anti-aldol product in a moderate enantioselectivity. A tetradentate ligand induced better enantioselectivity albeit relative loss of anti-selectivity. A variation of lithiating amide agent affected the selectivity, indicating involvement of an amine as a component of the mixed aggregate. Absolute configuration of some of the aldol products was determined by standard transformations.  相似文献   

8.
Enantioselective preference in the asymmetric synthesis where cyclohexene oxide is transformed enantioselectively to chiral (S)- or (R)-2-cyclohexen-1-ol by the reaction with the appropriate chiral lithium amide reagent has been evaluated theoretically using the MM3 force field. The plausible possible structures for each precursor (reaction intermediate complex) leading to a (S)- or (R)-2-cyclohexen-1-ol have been optimized with the extended MM3 force field applicable to the lithium amide functional group, and the populations of their (S)- or (R)-reaction intermediate complexes at an ambient temperature (298 K) were calculated. The initial structure for evaluating the reaction intermediates of this asymmetric synthesis was constructed on the basis of the optimized ab initio transition state structure (MP2/6-31+G) comprising lithium amide LiNH2 and propene oxide. To the thus obtained transition state structure composed of LiNH2 and propene oxide, the other remaining Cartesian coordinates for the actual reaction intermediates composed of the chiral lithium amides and cyclohexene oxide were added to make the reaction intermediate structure. The conformational search for the reaction intermediate has been carried out by using the Stochastic search Algorithm, and the optimized geometries and their conformational energies (steric energies) have been calculated by the MM3 force field. The populations calculated from the conformational energies of the reaction intermediate leading to the (S)- or (R)-2-cyclohexen-1-ol were shown to be linearly well correlated with the experimentally reported enantiomer excess (% ee) values. The critical factors to control the enantioselectivity were investigated on the basis of the optimized structures of the reaction intermediate complexes. The MM3 force field approach was shown to be applicable to the theoretical evaluation of the enantioselectivity and be useful for designing a new functional chiral lithium amide reagent for the asymmetric synthesis.  相似文献   

9.
The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph-Pd(P,N) species prefers a geometry with the phenyl trans to N. However, the alternative form, with Ph trans to P, is much less stable but much more reactive. In the preferred transition state, the phenyl moiety is trans to P, but significant electron density has been transferred to the alkene carbon trans to N. The steric interactions in this transition state fully account for the enantioselectivity observed with the ligands studied. The calculations also predict relative reactivity and nonlinear mixing effects for the investigated ligands; these predictions are fully validated by experimental testing. Finally, the low conversion observed with some catalysts was found to be caused by inactivation due to weak binding of the ligand to Pd(0). Adding monodentate PPh3 alleviated the precipitation problem without deteriorating the enantioselectivity and led to one of the most effective catalytic systems to date.  相似文献   

10.
We studied the role of alkali cations in the [{RuCl2(p-cymene)}2]-pseudo-dipeptide-catalyzed enantioselective transfer hydrogenation of ketones with isopropanol. Lithium salts were shown to increase the enantioselectivity of the reaction when iPrONa or iPrOK was used as the base. Similar transfer-hydrogenation systems that employ chiral amino alcohol or monotosylated diamine ligands are not affected by the addition of lithium salts. These observations have led us to propose that an alternative reaction mechanism operates in pseudo-dipeptide-based systems, in which the alkali cation is an important player in the ligand-assisted hydrogen-transfer step. DFT calculations of the proposed transition-state (TS) models involving different cations (Li+, Na+, and K+) confirm a considerable loosening of the TS with larger cations. This loosening may be responsible for the fewer interactions between the substrate and the catalytic complex, leading to lower enantiodifferentiation. This mechanistic hypothesis has found additional experimental support; the low ee obtained with [BnNMe3]OH (a large cation) as base can be dramatically improved by introducing lithium cations into the system. Also, the complexation of Na+, K+, and Li+ cations by the addition of [15]crown-5 and [18]crown-6 ethers and cryptand 2.1.1 (which selectively bind to these cations and, thus, increase their bulkiness), respectively, to the reaction mixture led to a significant drop in the enantioselectivity of the reaction. The lithium effect has proved useful for enhancing the reduction of different aromatic and heteroaromatic ketones.  相似文献   

11.
A general and efficient method for the rhodium-catalyzed enantioselective catalytic conjugate addition of organoboronic acids to alpha,beta-unsaturated sulfones is described. The success of the process relies on the use of alpha,beta-unsaturated 2-pyridyl sulfones as key metal-coordinating substrates; typical sulfones such as vinyl phenyl sulfones are inert under the reaction conditions. Among a variety of chiral ligands, Chiraphos provided the best asymmetric induction. This rhodium [Rh(acac)(C2H4)2]/Chiraphos catalyst system has a broad scope, being applicable to the addition of both aryl and alkenyl boronic acids to cis and trans alpha,beta-unsaturated 2-pyridyl sulfones. In most cases, especially in the addition of aryl boronic acids, the reactions take place cleanly and with high enantioselectivity, affording chiral beta-substituted 2-pyridyl sulfones in good yields and enantioselectivities (70-92% ee). The sense and magnitude of this enantioselectivity have been studied by DFT theoretical calculations of the aryl-rhodium insertion step. These calculations strongly support the formation of a five-membered pyridyl-rhodium chelated species as the most stable complex after the insertion into the C=C bond. These highly enantioenriched chiral sulfones are very appealing building blocks in enantioselective synthesis. For instance, the straightforward elimination of the 2-pyridylsulfonyl group by either Julia-Kociensky olefination or alkylation/desulfonylation sequences provides a variety of functionalized chiral compounds, such as allylic substituted alkenes or beta-substituted ketones and esters.  相似文献   

12.
Delong Liu 《Tetrahedron letters》2007,48(43):7591-7594
An enamine can serve as a good nucleophile for palladium-catalyzed asymmetric allylic alkylation, avoiding the use of an unstablilized ketone enolate formed by strong bases. In the presence of a palladium complex of chiral metallocene-based phosphino-oxazoline ligands, the reaction was carried out smoothly with high catalytic activity and excellent enantioselectivity. Different distances between the two Cp rings of ferrocene and ruthenocene affected the catalytic behavior in the reaction. Furthermore, high catalytic activity and good enantioselectivity were also afforded by the ferrocene-based diphosphine ligands with only planar chirality.  相似文献   

13.
A 2:1 lithium amide/ n-butyllithium aggregate 1 is investigated as an asymmetric addition template in hydrocarbon solvents. Several different chiral lithium amides were synthesized from l-valine and tested in the asymmetric addition of n-BuLi to various aldehydes. Enantiomeric excesses up to 83% were obtained in the case of the addition of n-BuLi to pivaldehyde at -116 degrees C in pentane. (1)H and (13)C INEPT DOSY were utilized to characterize a new trimeric complex 12 between 2 equiv of lithium amide and 1 equiv of lithium alkoxide. This mixed aggregate strongly indicates the possibility of product-induced chirality inhibition that is detrimental to the enantioselectivity of asymmetric addition reaction.  相似文献   

14.
Chiral polyfluoroarene derivatives are an important scaffold in chemistry. An unprecedented enantioselective C?H alkylation of polyfluoroarenes with alkenes is described. The reaction employs bulky chiral N‐heterocyclic carbene (NHC) ligands for nickel catalysts to enable exclusive activation of C?H bonds over C?F bonds and complete endo‐selective C?H annulation and excellent enantioselectivity. A wide variety of chiral fluorotetralins, compounds otherwise difficultly accessed but serve as important bioisosteric analogs of both tetralin and heterocycle units for drug design, are expediently synthesized from easily available substrates. To our knowledge, this is the first example of catalytic enantioselective C?H functionalization of polyfluoroarenes.  相似文献   

15.
The enantioselective propargylation of aromatic aldehydes with allenyltrichlorosilanes catalyzed by bipyridine N-oxides was explored using density functional theory. Low-lying transition states for a highly enantioselective helical bipyridine N-oxide catalyst [Org. Lett. 2011, 13, 1654] were characterized at the B97-D/TZV(2d,2p) level of theory. Predicted free energy barrier height differences are in agreement with experimental ee's for the propargylation of benzaldehyde and substituted analogues. The origin of enantioselectivity was pinpointed through distortion-interaction analyses. The stereoselectivity arises in part from through-space electrostatic interactions of the carbonyl carbon with the Cl ligands bound to Si, rather than noncovalent aryl-aryl interactions between the aromatic aldehyde and the helix as previously proposed. Moreover, aryl-aryl interactions between the aldehyde and helix are predicted to favor transition states leading to the R enantiomer, and ultimately reduce the enantioselectivity of this reaction. (S)-2,2'-bipyridine N-oxide was studied as a model catalyst in order to quantify the inherent enantioselectivity arising from different chiral arrangements of ligands around the hexacoordinate silicon in the stereocontrolling transition state for these reactions. The predicted selectivities arising from different chiral octahedral silicon complexes provide guidelines for the development of transition state models for N-oxide-based alkylation catalysts.  相似文献   

16.
A lithium ester enolate was activated by both a chiral etheral ligand and a lithium amide to form a ternary complex reagent that reacted with enoates giving the corresponding Michael addition products in reasonably high enantioselectivity of up to 97% ee.  相似文献   

17.
A practical synthesis of potentially tridentate P,N,N-ligands containing two stereogenic elements incorporated into the axially chiral Quinazolinap and centrally chiral 2-oxazoline subunits is reported. The application of these novel hybrid ligands in Pd(0)-catalyzed asymmetric allylic alkylation revealed the matched and mismatched diastereomer, dominant stereogenic element, as well as the effect of the oxazoline R substituent on the level of enantioselectivity (ee's up to 81%). [structure: see text]  相似文献   

18.
A novel chiral bis(ferrocenyl) P2N ligand 1 with C2-symmetry was synthesized through a four-step procedure from (R)-N,N-dimethyl-l-ferrocenylethylamine. In a model reaction of Pdcatalyzed allylic alkylation of 1,3-diphenylprop-2-enyl acetate 6 with dimethyl malonate, good enantioselectivity (86% e.e.) was obtained.  相似文献   

19.
The synthesis of a series of chiral hydroxy amide ligands is described. These ligands were used in a ruthenium-catalysed transfer hydrogenation reaction where one ligand gave the product in 72% ee. The ligands were also used in two titanium-catalysed reactions, an alkylation where ee’s of up to 74% were achieved and a phenyl acetylene addition where more modest selectivities were observed.  相似文献   

20.
Mixed aggregates of chiral lithium amide and lithium ester enolate have been employed in the enantioselective conjugate addition on alpha,beta-unsaturated esters. Michael adducts were obtained in ee's up to 76% combining a lithium enolate and a chiral 3-aminopyrrolidine lithium amide. The sense of the induction was found to be determined by both the relative configuration of the stereogenic centers borne by the amide and the solvent in which the reaction was conducted. [reaction: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号