首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the alignment of ethylene and of some of its analogues via short, non-resonant laser pulses and show that it depends crucially on the nuclear spin of the molecules. We calculate the time-dependent alignment factors of the four nuclear spin isomers of ethylene and analyze them by comparison with the symmetric top molecule allene. Moreover, we explore how the nuclear spin selective alignment depends on the asymmetry of the molecules and on the intensity of the laser pulse. As an application, we discuss how nuclear spin selective alignment could be applied in order to separate different isotopomers of ethylene.  相似文献   

2.
We propose an approach for separating nuclear spin isomers with coherent light and illustrate it by numerical calculations using fulvene as a model system. The scheme employs the equivalence of torsion and interchange of equivalent H-atoms in a class of molecules of which fulvene is a simple example. The exchange symmetry couples with the rotational symmetry to produce a spatial distinction between the two photo-excited nuclear spin isomers, and wavepacket interferometry is applied to separate the species.  相似文献   

3.
In laser flash photolysis (LFP) work, noise-like signals were observed together with transient absorption decay spectra in time domain. Analyzed results show that it is a valuable resonance spectrum of excited state molecules, in which four molecular cases are given here. We proposed that this kind signal might originate from nuclear or nuclear and electron spin resonance features in the excited molecules based on radio wave frequency spectrum levels and the significant interaction with static magnetic field.  相似文献   

4.
The influence shaped femtosecond laser pulses have on molecular photofragmentation and ionization, coupled with the intrinsic sensitivity of mass spectrometry, results in a powerful tool for fast, accurate, reproducible and quantitative isomeric identification. Complex phase functions are introduced to enhance differences during the laser-molecule interactions, which depend on geometric structure, resulting in different fragmentation fingerprints. A full account is given on the setup and results leading to a technique that can be used to distinguish between compounds normally indistinguishable by conventional electron ionization mass spectrometry. We demonstrate geometric and structural isomer identification of cis-/trans-3-heptene, cis-/trans-4-methyl-2-pentene, o-/p-cresol and o-/p-xylene. For the positional isomers of xylene we present a complete dataset consisting of 1024 different phases to explore phase complexity. A selection of two phases from that data can then be used to achieve quantitative identification in mixtures of xylene isomers. Finally, we evaluate receiver operational curves obtained from our experimental data to demonstrate the reliability that can be achieved by femtosecond laser control mass spectrometry.  相似文献   

5.
The exchange reaction Na + Na2 → Na2 + Na is studied in the gas phase. The influence of this reaction on the nuclear spin states of the molecules is investigated by two different experiments. In an ortho-para pumping experiment the ortho-para conversion rate of Na2 is determined with aid of laser induced molecular fluorescence. This rate is found to be twice the nuclear spin relaxation of the molecules, measured in a NMR experiment with nuclear spin polarized Na2. Furthermore the influence of dissociation- and intramolecular relaxation processes on nuclear spin relaxation and ortho-para conversion is investigated.  相似文献   

6.
Femtosecond (fs) lasers have high intensity and ultrashort pulse duration. Tunneling ionization occurs for molecules subject to such intense laser fields. We have studied the mass spectra of a variety of molecules irradiated by intense fs laser pulses. These molecules include some typical volatile organic compounds contained in human breath and in the atmosphere. The results demonstrate that all of these molecules can be ionized by intense fs laser pulses. Dominant parent ion and some characteristic ionic fragments are observed for each molecule. The degree of fragmentation can be controlled by adjusting the laser intensity. Moreover, saturation ionization can occur for each molecule by increasing the laser intensity. These features indicate that fs laser mass spectrometry can be a sensitive tool to identify and quantify volatile organic compounds in human breath.  相似文献   

7.
High-resolution nuclear magnetic resonance spectra from samples located in inhomogeneous static and radio frequency magnetic fields can be obtained by applying a train of z-rotation radio frequency pulses to repeatedly refocus the inhomogeneous broadening during signal detection. z-rotation pulses based on an adiabatic double passage are effective over wide bandwidths using a limited amount of radio frequency power at the expense of being time consuming and, consequently, sensitive to motion of the spin bearing molecules. The signal damping resulting from molecular self-diffusion during the pulse was studied experimentally and using Brownian dynamics simulations. The results show that the analytical expression for diffusion damping during a double spin echo is a reasonable approximation for the signal decay during an adiabatic z-rotation pulse. Methods to alleviate the effects of diffusion are discussed.  相似文献   

8.
H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.  相似文献   

9.
Two coherent sequential IR+UV laser pulses may be used to generate two time-dependent nuclear wave functions in electronic excited triplet and singlet states via single (UV) and two photon (IR+UV) excitation pathways, exploiting spin-orbit coupling and vibrational pre-excitation, respectively. These wave functions evolve from different Franck-Condon domains until they overlap in a domain of bond stretching with efficient intersystem crossing. Here, the coherence of the laser pulses is turned into optimal interferences of the wave packets, yielding the total wave packet at the target place, time, and with dominant target spin. The time resolution of spin control is few femtoseconds. The mechanism is demonstrated by means of quantum model simulations for ClF in an Ar matrix.  相似文献   

10.
The possibility that chemical reactions may be controlled by tailored femtosecond laser pulses has inspired recent studies that take advantage of their short pulse duration, comparable to intramolecular dynamics, and high peak intensity to fragment and ionize molecules. In this article, we present an experimental quest to control the chemical reactions that take place when isolated molecules interact with shaped near-infrared laser pulses with peak intensities ranging from 1013 to 1016 W/cm2. Through the exhaustive evaluation of hundreds of thousands of experiments, we methodically evaluated the molecular response of 16 compounds, including isomers, to the tailored light fields, as monitored by time-of-flight mass spectrometry. Analysis of the experimental data, taking into account its statistical significance, leads us to uncover important trends regarding the interaction of isolated molecules with an intense laser field. Despite the energetics involved in fragmentation and ionization, the integrated second-harmonic generation of a given laser pulse (ISHG), which was recorded as an independent diagnostic parameter, was found to be linearly proportional to the total ion yield (IMS) generated by that pulse in all of our pulse shaping measurements. Order of magnitude laser control over the relative yields of different fragment ions was observed for most of the molecules studied; the fragmentation yields were found to vary monotonically with IMS and/or ISHG. When the extensive changes in fragmentation yields as a function of IMS were compared for different phase functions, we found essentially identical results. This observation implies that fragmentation depends on a parameter that is responsible for IMS and independent from the particular time-frequency structure of the shaped laser pulse. With additional experiments, we found that individual ion yields depend only on the average pulse duration, implying that coherence does not play a role in the observed changes in yield as a function of pulse shaping. These findings were consistently observed for all molecules studied (p-, m-, o-nitrotoluene, 2,4-dinitrotoluene, benzene, toluene, naphthalene, azulene, acetone, acetyl chloride, acetophenone, p-chrolobenzonitrile, N,N-dimethylformamide, dimethyl phosphate, 2-chloroethyl ethyl sulfide, and tricarbonyl-[eta5-1-methyl-2,4-cyclopentadien-1-yl]-manganese). The exception to our conclusion is that the yield of small singly-charged fragments resulting from a multiple ionization process in a subset of molecules, were found to be highly sensitive to the phase structure of the intense pulses. This coherent process plays a minimal role in photofragmentation; therefore, we consider it an exception rather than a rule. Changes in the fragmentation process are dependent on molecular structure, as evidenced in a number of isomers, therefore femtosecond laser fragmentation could provide a practical dimension to analytical chemistry techniques.  相似文献   

11.
12.
Multidimensional chemical detection and identification based on phase shaped femtosecond laser pulses coupled to mass spectrometry is demonstrated. The method based on binary phase shaping (BPS) takes into account the accuracy and precision standards required by analytical chemistry. It couples multiphoton intrapulse interference of ultrashort laser pulses with time-of-flight mass spectrometry (TOF-MS). We demonstrate that BPS-MS provides a rigorous multidimensional technique for the detection and identification of analogues to chemical agents and mixtures in real time. Experimental results on dimethyl phosphite and pyridine illustrate the new approach toward the real-time accurate detection and identification of chemical compounds including isomers.  相似文献   

13.
Water exists as two nuclear‐spin isomers, para and ortho, determined by the overall spin of its two hydrogen nuclei. For isolated water molecules, the conversion between these isomers is forbidden and they act as different molecular species. Yet, these species are not readily separated, and no pure para sample has been produced. Accordingly, little is known about their specific physical and chemical properties, conversion mechanisms, or interactions. The production of isolated samples of both spin isomers is demonstrated in pure beams of para and ortho water in their respective absolute ground state. These single‐quantum‐state samples are ideal targets for unraveling spin‐conversion mechanisms, for precision spectroscopy and fundamental symmetry‐breaking studies, and for spin‐enhanced applications, for example laboratory astrophysics and astrochemistry or hypersensitized NMR experiments.  相似文献   

14.
We have studied multielectron ionization and Coulomb explosion of C2H4 irradiated by 110 fs, 800 nm laser pulses at an intensity of approximately 10(15) W/cm2. Strong anisotropic angular distributions were observed for the atomic ions Cn+(n = 1-3). Based on the results of two crossed linearly polarized laser pulses, we conclude that such anisotropic angular distributions result from dynamic alignment, in which the rising edge of the laser pulses aligns the neutral C2H4 molecules along the laser polarization direction. The angular distribution of the exploding fragments, therefore, reflects the degree of the alignment of molecules before ionization. Using the same femtosecond laser with intensity below the ionization threshold, the alignment of C2H4 molecules was also observed.  相似文献   

15.
A method is presented to partially transfer nuclear spin polarization from one isotope S to another isotope I by the way of heteronuclear spin couplings, while minimizing the loss of spin order to other degrees of freedom. The desired I spin polarization to be detected is a design parameter, while the sequence of pulses at the two Larmor frequencies is optimized to store the greatest unused S spin longitudinal polarization for subsequent use. The unitary evolution for the case of I(N)S spin systems illustrates the potentially ideal efficiency of this strategy, which is of particular interest when the spin-lattice relaxation time of S greatly exceeds that of I. Explicit timing and pulses are tabulated for the cases for which M ≤ 10 partial transfers each result in equal final polarization of 1/M or more compared to the final I polarization expected in a single transfer for N = 1, 2, or 3 I spins. Advantages for the ratiometric study of reacting molecules and hyperpolarized initial conditions are outlined.  相似文献   

16.
Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low‐field NMR spectrometer incorporating a highly specialized radio‐frequency resonator, where a high degree of proton‐spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high‐quality factors. We use a commercial bench‐top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton‐hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio‐frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.  相似文献   

17.
A mixed quantum-classical approach is introduced which allows the dynamical response of molecules driven far from equilibrium to be modeled. This method is applied to the interaction of molecules with intense, short-duration laser pulses. The electronic response of the molecule is described using time-dependent density functional theory (TDDFT) and the resulting Kohn-Sham equations are solved numerically using finite difference techniques in conjunction with local and global adaptations of an underlying grid in curvilinear coordinates. Using this approach, simulations can be carried out for a wide range of molecules and both all-electron and pseudopotential calculations are possible. The approach is applied to the study of high harmonic generation in N(2) and benzene using linearly polarized laser pulses and, to the best of our knowledge, the results for benzene represent the first TDDFT calculations of high harmonic generation in benzene using linearly polarized laser pulses. For N(2) an enhancement of the cut-off harmonics is observed whenever the laser polarization is aligned perpendicular to the molecular axis. This enhancement is attributed to the symmetry properties of the Kohn-Sham orbital that responds predominantly to the pulse. In benzene we predict that a suppression in the cut-off harmonics occurs whenever the laser polarization is aligned parallel to the molecular plane. We attribute this suppression to the symmetry-induced response of the highest-occupied molecular orbital.  相似文献   

18.
The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15N2-azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suitable magnetic fields. Enhancement factors (relative to 9.4 T) reach up to 3000 for 15N spins and up to 30 for the 1H spins. We compare two approaches to observe either hyperpolarized magnetization of 15N/1H spins, or hyperpolarized singlet order of the 15N spin pair. The results presented here will be useful for further experiments in which hyperpolarized cis-15N2-azobenzene is switched by light to trans-15N2-azobenzene for storing the produced hyperpolarization in the long-lived spin state of the 15N pair of trans-15N2-azobenzene.  相似文献   

19.
The spectrum of water can be considered as the juxtaposition of the spectra of two molecules, with different total nuclear spin: ortho-H2O, and para-H2O. No transitions have ever been observed between the two different nuclear-spin isotopomers. The interconversion time is unknown and it is widely assumed that interconversion is forbidden without some other intervention. However, weak nuclear spin-rotation interaction occurs and can drive ortho to para transitions. Ab initio calculations show that the hyperfine nuclear spin-rotational coupling constants are about 30 kHz. These constants are used to explore the whole vibration-rotation spectrum with special emphasis on the coupling between nearby levels. Predictions are made for different spectral regions where the strongest transitions between ortho and para levels of water could be experimentally observed.  相似文献   

20.
We numerically investigate the post-pulse alignment of rotationally excited diatomic molecules upon nonresonant interaction with a linearly polarized laser pulse. In addition to the simulations, we develop a simple model which qualitatively describes the shape and amplitude of post-pulse alignment induced by a laser pulse of moderate power density. In our treatment we take into account that molecules in rotationally excited states can interact with a laser pulse not only by absorbing energy but also by stimulated emission. The extent to which these processes are present in the interaction depends, on the one hand, on the directionality of the molecular angular momentum (given by the M quantum number), and on the other hand on the ratio of transition frequencies and pulse duration (determined by the J number). A rotational wave packet created by a strong pulse from an initially pure state contains a broad range of rotational levels, over which the character of the interaction can change from non-adiabatic to adiabatic. Depending on the laser pulse duration and amplitude, the transition from the non-adiabatic to the adiabatic limit proceeds through a region with dominant rotational heating, or alignment, for short pulses and a large region with rotational cooling, and correspondingly preferred anti-alignment, for longer pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号