共查询到20条相似文献,搜索用时 15 毫秒
1.
《Comptes Rendus Physique》2018,19(4):187-204
Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex, non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity, and interference. 相似文献
2.
The main objective of the present paper is further to investigate global synchronization of a general model of complex delayed dynamical networks. Based on stability theory on delayed dynamical systems, some simple yet less conservative criteria for both delay-independent and delay-dependent global synchronization of the networks are derived analytically. It is shown that under some conditions, if the uncoupled dynamical node is stable itself, then the network can be globally synchronized for any coupling delays as long as the coupling strength is small enough. On the other hand, if each dynamical node of the network is chaotic, then global synchronization of the networks is heavily dependent on the effects of coupling delays in addition to the connection configuration. Furthermore, the results are applied to some typical small-world (SW) and scale-free (SF) complex networks composing of coupled dynamical nodes such as the cellular neural networks (CNNs) and the chaotic FHN neuron oscillators, and numerical simulations are given to verify and also visualize the theoretical results. 相似文献
3.
Ajay Deep Kachhvah 《The European Physical Journal B - Condensed Matter and Complex Systems》2017,90(1):8
Here we investigate the synchronization of networks of FitzHugh-Nagumo neurons coupled in scale-free, small-world and random topologies, in the presence of distributed time delays in the coupling of neurons. We explore how the synchronization transition is affected when the time delays in the interactions between pairs of interacting neurons are non-uniform. We find that the presence of distributed time-delays does not change the behavior of the synchronization transition significantly, vis-a-vis networks with constant time-delay, where the value of the constant time-delay is the mean of the distributed delays. We also notice that a normal distribution of delays gives rise to a transition at marginally lower coupling strengths, vis-a-vis uniformly distributed delays. These trends hold across classes of networks and for varying standard deviations of the delay distribution, indicating the generality of these results. So we conclude that distributed delays, which may be typically expected in real-world situations, do not have a notable effect on synchronization. This allows results obtained with constant delays to remain relevant even in the case of randomly distributed delays. 相似文献
4.
In this Letter, we have dealt with the problem of lag synchronization and parameter identification for a class of chaotic neural networks with stochastic perturbation, which involve both the discrete and distributed time-varying delays. By the adaptive feedback technique, several sufficient conditions have been derived to ensure the synchronization of stochastic chaotic neural networks. Moreover, all the connection weight matrices can be estimated while the lag synchronization is achieved in mean square at the same time. The corresponding simulation results are given to show the effectiveness of the proposed method. 相似文献
5.
6.
This paper explores the intra-layer synchronization in duplex networks with different topologies within layers and different inner coupling patterns between, within, and across layers. Based on the Lyapunov stability method, we prove theoretically that the duplex network can achieve intra-layer synchronization under some appropriate conditions, and give the thresholds of coupling strength within layers for different types of inner coupling matrices across layers. Interestingly,for a certain class of coupling matrices across layers, it needs larger coupling strength within layers to ensure the intra-layer synchronization when the coupling strength across layers become larger, intuitively opposing the fact that the intra-layer synchronization is seemly independent of the coupling strength across layers. Finally, numerical simulations further verify the theoretical results. 相似文献
7.
V. I. Vostokov 《Radiophysics and Quantum Electronics》1994,37(8):662-667
A method of developing chaotically synchronized systems when the structure of the system that generates the driving signal is unknown is proposed in this paper. This method is based on the approximation of the driving system structure by neural networks incorporated in the response system. This makes the method different from those proposed previously, which are based on the analysis of the presumedly known equations of motion of the driving system. The method is illustrated by an example of developing synchronized systems for the dynamic Lorentz system.Institute of Applied Physics. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 37, No. 8, pp. 1020–1029, August, 1994. 相似文献
8.
Distributed wireless quantum communication networks with partially entangled pairs*Distributed wireless quantum communication networks with partially entangled pairs*Distributed wireless quantum communication networks with partially entangled pairs*Distributed wireless quantum communication networks with partially entangled pairs 下载免费PDF全文
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible, 相似文献
9.
10.
Chuang IL 《Physical review letters》2000,84(9):2006-2009
We study theoretically the coherent nonlinear optical response of doped quantum wells with several subbands. When the Fermi energy approaches the exciton level of an upper subband, the absorption spectrum acquires a characteristic double-peak shape originating from the interference between the Fermi-edge singularity and the exciton resonance. We demonstrate that, for off-resonant pump excitation, the pump-probe spectrum undergoes a striking transformation, with a time-dependent exchange of oscillator strength between the Fermi-edge singularity and exciton peaks. This effect originates from the many-body electron-hole correlations which determine the dynamical response of the Fermi sea. 相似文献
11.
Improved control of distributed parameter systems using wireless sensor and actuator networks:An observer-based method 下载免费PDF全文
In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches. 相似文献
12.
Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks 总被引:1,自引:0,他引:1
Real systems are often subject to both noise perturbations and impulsive effects. In this paper, we study the stability and stabilization of systems with both noise perturbations and impulsive effects. In other words, we generalize the impulsive control theory from the deterministic case to the stochastic case. The method is based on extending the comparison method to the stochastic case. The method presented in this paper is general and easy to apply. Theoretical results on both stability in the pth mean and stability with disturbance attenuation are derived. To show the effectiveness of the basic theory, we apply it to the impulsive control and synchronization of chaotic systems with noise perturbations, and to the stability of impulsive stochastic neural networks. Several numerical examples are also presented to verify the theoretical results. 相似文献
13.
Recent research has revealed that complex networks with a smaller average distance and more homogeneous degree distribution are more synchronizable. We find, however, that synchronization in complex, clustered networks tends to obey a different set of rules. In particular, the synchronizability of such a network is determined by the interplay between intercluster and intracluster links. The network is most synchronizable when the numbers of the two types of links are approximately equal. In the presence of a mismatch, increasing the number of intracluster links, while making the network distance smaller, can counterintuitively suppress or even destroy the synchronization. We provide theory and numerical evidence to establish this phenomenon. 相似文献
14.
Explosive collective phenomena have attracted much attention since the discovery of an explosive percolation transition. In this Letter, we demonstrate how an explosive transition shows up in the synchronization of scale-free networks by incorporating a microscopic correlation between the structural and the dynamical properties of the system. The characteristics of the explosive transition are analytically studied in a star graph reproducing the results obtained in synthetic networks. Our findings represent the first abrupt synchronization transition in complex networks and provide a deeper understanding of the microscopic roots of explosive critical phenomena. 相似文献
15.
Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intra- coupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. 相似文献
16.
17.
Fernando Arizmendi 《Physica A》2008,387(22):5631-5638
We introduce an adaptation algorithm by which an ensemble of coupled oscillators with attractive and repulsive interactions is induced to adopt a prescribed synchronized state. While the performance of adaptation is controlled by measuring a macroscopic quantity, which characterizes the achieved degree of synchronization, adaptive changes are introduced at the microscopic level of the interaction network, by modifying the configuration of repulsive interactions. This scheme emulates the distinct levels of selection and mutation in biological evolution and learning. 相似文献
18.
J.M.V. Grzybowski E.E.N. Macau T. Yoneyama 《The European physical journal. Special topics》2014,223(8):1447-1463
Pairs of delay-coupled chaotic systems were shown to be able to achieve isochronal synchronization under bidirectional coupling and self-feedback. Such identical-in-time behavior was demonstrated to be stable under a set of conditions and to support simultaneous bidirectional communication between pairs of chaotic oscillators coupled with time-delay. More recently, it was shown that isochronal synchronization can emerge in networks with several hundreds of oscillators, which allows its exploitation for communication in distributed systems. In this paper, we introduce a conceptual framework for the application of isochronal synchronization to TDMA communication in networks of delay-coupled chaotic oscillators. On the basis of the stable and identical-in-time behavior of delay-coupled chaotic systems, the chaotic dynamics of distributed oscillators is used to support and sustain coordinate communication among nodes over the network. On the basis of the unique features of chaotic systems in isochronal synchronization, the chaotic signals are used to timestamp clock readings at the physical layer such that logical clock synchronization among the nodes (a prerequisite for TDMA) can be exploited using the same basic structure. The result is a standalone network communication scheme that can be advantageously applied in the context of ad-hoc networks or alike, especially short-ranged ones that yield low values of time-delay. As explored to its depths in practical implementations, this conceptual framework is argued to have potential to provide gain in simplicity, security and efficiency in communication schemes for autonomous/standalone network applications. 相似文献
19.
Coarse graining techniques offer a promising alternative to large-scale simulations of complex dynamical systems, as long as the coarse-grained system is truly representative of the initial one. Here, we investigate how the dynamical properties of oscillator networks are affected when some nodes are merged together to form a coarse-grained network. Moreover, we show that there exists a way of grouping nodes preserving as much as possible some crucial aspects of the network dynamics. This coarse graining approach provides a useful method to simplify complex oscillator networks, and more generally, networks whose dynamics involves a Laplacian matrix. 相似文献
20.
《Physical Communication》2009,2(4):248-264
We propose a novel receiver for Ultra-Wide-band Impulse-Radio communication in Wireless Sensor Networks, which are characterized by bursty traffic and severe power constraints. The receiver is based on the principle of Compressed Sensing, and exploits the sparsity of the transmitted signal to achieve reliable demodulation from a relatively small number of projections. The projections are implemented in an analog front-end as correlations with tractable test-functions, and a joint decoding of the time of arrival and the data bits is done by a DSP back-end using an efficient quadratic program. The proposed receiver differs from extant schemes in the following respects: (i) It needs neither a high-rate analog-to-digital converter nor wide-band analog delay lines, and can operate in a significantly under-sampled regime. (ii) It is robust to large timing uncertainty and hence the transmitter need not waster power on explicit training headers for timing synchronization. (iii) It can operate in a regime of heavy inter-symbol interference (ISI), and therefore allows a very high baud rate (close to the Nyquist rate). (iv) It has a built-in capability to blindly acquire and track the channel response irrespective of line-of-sight/non-line-of-sight conditions. We demonstrate that the receiver’s performance remains close to the maximum likelihood receiver under every scenario of under-sampling, timing uncertainty, ISI, and channel delay spread. 相似文献