首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic Raman response in the electron-doped cuprate superconductors is studied based on the t-t-J model. It is shown that although the domelike shape of the doping dependent peak energy in the B2g symmetry is a common feature for both electron-doped and hole-doped cuprate superconductors, there are pronounced deviations from a cubic response in the B1g channel and a linear response in the B2g channel for the electron-doped case in the low energies. It is also shown that these pronounced deviations are mainly caused by a nonmonotonic d-wave gap in the electron-doped cuprate superconductors.  相似文献   

2.
By considering the nonmonotonic d-wave gap effect, the energy and momentum dependence of quasiparticle scattering interference is studied in the presence of a single impurity. It is shown that the pattern of the quasiparticle scattering peaks in the full Brillouin zone of electron-doped cuprate superconductors is very different from that in the hole-doped case described by the Octet model. This difference is the result of the nonmonotonic d-wave superconducting gap in the electron-doped case. As the energy increases, the position of the local peaks in the Brillouin zone moves rapidly. In particular, the characteristic peaks of the electron-doped cuprate superconductors appear between the antinodal and nodal directions, unlike in the hole-doped case.  相似文献   

3.
We report on laser-excited angle-resolved photoemission spectroscopy in the electron-doped cuprate Sm1.85Ce0.15CuO(4-δ). The data show the existence of a nodal hole-pocket Fermi surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferrmagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole pocket is compatible with a d-wave symmetry.  相似文献   

4.
We study the emergence of a magnetic resonance in the superconducting state of the electron-doped cuprate superconductors. We show that the recently observed resonance peak in the electron-doped superconductor Pr0.88LaCe0.12CuO4-delta is consistent with an overdamped spin exciton located near the particle-hole continuum. We present predictions for the magnetic-field dependence of the resonance mode as well as its temperature evolution in those parts of the phase diagram where dx2-y2-wave superconductivity may coexist with an antiferromagnetic spin-density wave.  相似文献   

5.
We use inelastic neutron scattering to probe magnetic excitations of an optimally electron-doped superconductor Nd1.85Ce0.15CuO4-delta above and below its superconducting transition temperature Tc=25 K. In addition to gradually opening a spin pseudogap at the antiferromagnetic ordering wave vector Q=(1/2,1/2,0), the effect of superconductivity is to form a resonance centered also at Q=(1/2,1/2,0) but at energies above the spin pseudogap. The intensity of the resonance develops like a superconducting order parameter, similar to those for hole-doped superconductors and electron-doped Pr0.88LaCe0.12CuO4. The resonance is therefore a general phenomenon of cuprate superconductors, and must be fundamental to the mechanism of high-Tc superconductivity.  相似文献   

6.
Yingping Mou 《哲学杂志》2013,93(35):3361-3380
Abstract

In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.  相似文献   

7.
We propose a weakly coupled two-band model with dx(2)(-y(2)) pairing symmetry to account for the anomalous temperature dependence of superfluid density rho(s) in electron-doped cuprate superconductors. This model gives a unified explanation to the presence of an upward curvature in rho(s) near T(c) and a weak temperature dependence of rho(s) in low temperatures. Our work resolves a discrepancy in the interpretation of different experimental measurements and suggests that the pairing in electron-doped cuprates has predominately dx(2)(-y(2)) symmetry in the whole doping range.  相似文献   

8.
铜氧化物高温超导体的发现, 打破了基于电声子相互作用BCS理论所预言的超导转变温度极限, 掀开了高温超导材料探索和高温超导机理研究的序幕. 根据掺杂类型的不同, 铜氧化物超导材料可以分为空穴型掺杂和电子型掺杂两类. 受限于样品, 对电子型掺杂铜氧化物的研究工作远少于空穴型掺杂体系. 本文简要回顾有关电子型掺杂铜氧化物超导体近期研究成果, 通过对比电子型掺杂和空穴型掺杂铜氧化物的相图来阐明电子型掺杂铜氧化物的研究对探索高温超导机理的必要性, 并特别针对电子型掺杂样品制备中的关键因素“退火过程”展开讨论. 结合课题组最新实验结果和相关实验报道我们发现电子型掺杂铜氧化物超导体在制备过程中除受到温度和氧分压的影响外, 退火效果还受到界面应力的强烈调制. 在综合考虑样品生长过程中温度、气氛及应力等多种因素的基础上, 探讨了“保护退火”方法导致电子型体系化学掺杂相图变化的起因.  相似文献   

9.
10.
Despite of the success of the slave-boson theory in capturing qualitative physics of high-temperature superconductors like cuprates, it fails to reproduce the correct temperature-dependent behavior of superfluid density, let alone the independence of the linear temperature term on doping in the underdoped regimes of hole-doped cuprate, a common experimental observation in different cuprates. It remains puzzling up to now in spite of intensive theoretical efforts. For electron-doped case, even qualitative treatment is not reported at present time. Here we revisit these problems and provide an alternative superfluid density formulation by using the London relation instead of employing the paramagnetic current-current correlation function. The obtained formula, on the one hand, provides the correct temperature-dependent behavior of the superfluid density in the whole temperature regime, on the other hand, makes the doping dependence of the linear temperature term substantially weaken and a possible interpretation for its independence on doping is proposed. As an application, electron-doped cuprate is studied, whose result qualitatively agrees with existing experiments and successfully explains the origin of d- to anisotropic s-wave transition across the optimal doping. Our result remedies some failures of the slave-boson theory as employed to calculate superfluid density in cuprates and may be useful in the understanding of the related physics in other strongly correlated systems, e.g. NaxCoO2·yH2O and certain iron-based superconductors with dominating local magnetic exchange interaction.  相似文献   

11.
I. M. Sokolov 《JETP Letters》2017,105(5):341-345
A complete set of quasiparticle operators diagonalizing operators of the Coulomb and exchange interactions of copper and oxygen holes in cuprate high-temperature superconductors (HTSCs) is obtained. A scheme of energy bands in the regime of strong electron correlations is constructed. The effective operator for the singleband approximation is obtained with this scheme. It is found that the role of three-site correlations in hole HTSCs is negligibly small. This circumstance explains both the sharp increase in critical temperatures of hole HTSCs in comparison with electron-doped ones and the asymmetry between the spectra of collective spin excitations in these compounds.  相似文献   

12.
On the basis of the Hubbard model, we extend the fluctuation-exchange (FLEX) approach to investigating the properties of the antiferromagnetic (AF) phase in electron-doped cuprate superconductors. Furthermore, by incorporating the effect of scatterings due to the disordered dopant atoms into the FLEX formalism, our numerical results show that the antiferromagnetic transition temperature, the onset temperature of pseudogap due to spin fluctuations, the spectral density of the single particle near the Fermi surface, and the staggered magnetization in the AF phase as a function of electron doping can consistently account for the experimental measurements.  相似文献   

13.
对铜氧化物高温超导体的研究是凝聚态物理中最重要的问题之一.理论研究上的困难在于铜氧化物高温超导材料中单占据条件所导致的强关联效应.铜氧化物高温超导材料可以用t-J模型进行描述,而上述的单占据条件则体现于t-J模型中的Gutzwiller投影算符.重整化平均场理论(RMFT)是一种处理这类由Gutzwiller投影算符所导致的强关联效应比较有效的方法.本文首先对铜氧化物高温超导材料进行简单的介绍.然后我们将重点介绍Gutzwiller近似.最后我们会介绍重整化平均场理论,以及其在铜氧化物高温超导材料和其他一些强关联材料中的应用.  相似文献   

14.
We present point contact spectroscopy (PCS) data for junctions between a normal metal and the electron-doped cuprate superconductor Pr(2-x)CexCuO4 (PCCO). For the underdoped compositions of this cuprate ( x approximately 0.13) we observe a peak in the conductance-voltage characteristics of the point contact junctions. The shape and magnitude of this peak suggest the presence of Andreev bound states at the surface of underdoped PCCO which is evidence for a d-wave pairing symmetry. For overdoped PCCO ( x approximately 0.17) the PCS data do not show any evidence of Andreev bound states at the surface suggesting an s-wave pairing symmetry.  相似文献   

15.
We have performed high resolution angle-resolved photoemission (ARPES) studies on electron-doped cuprate superconductors Sm2-xCexCuO4 (x=0.10, 0.15, 0.18), Nd2-xCexCuO4 (x=0.15), and Eu2-xCexCuO4 (x=0.15). Imaginary parts of the electron removal self energy show steplike features due to an electron-bosonic mode coupling. The steplike feature is seen along both nodal and antinodal directions but at energies of 50 and 70 meV, respectively, independent of the doping and rare earth element. Such energy scales can be understood as being due to preferential coupling to half- and full-breathing mode phonons, revealing the phononic origin of the kink structures. Estimated electron-phonon coupling constant lambda from the self energy is roughly independent of the doping and momentum. The isotropic nature of lambda is discussed in comparison with the hole-doped case where a strong anisotropy exists.  相似文献   

16.
《中国物理 B》2021,30(10):107103-107103
The recent discovery of superconductivity in doped rare-earth infinite-layer nickelates RNiO_2, R = Nd, Pr as a new family of unconventional superconductors has inspired extensive research on their intriguing properties. One of the major motivation to explore the nickelate superconductors originated from their similarities with and differences from the cuprate superconductors, which have been extensively studied over the last decades but are still lack of the thorough understanding.In this short review, we summarized our recent investigation of the relevance of Ni/Cu-3 d multiplet structure on the hole doped spin states in cuprate and recently discovered nickelate superconductors via an impurity model incorporating all the 3d orbitals. Further plausible explorations to be conducted are outlined as well. Our presented work provides an insightful framework for the investigation of the strongly correlated electronic systems in terms of the multiplet structure of transition metal compounds.  相似文献   

17.
高温超导机制研究状况   总被引:1,自引:0,他引:1  
周玲  王文春 《大学物理》1999,18(4):29-31
以读者较熟悉的传统的BCS理论为主,介绍了目前高温超导机制研究进行最多的几个主要流派,指出关于序参量的对称性问题成了争论的焦点问题。若实验上肯定了能隙的对称性,可能会结束各派纷呈的局面。  相似文献   

18.
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr(2-x)Ce(x)CuO(4-delta) (PCCO) crystals, as well as parallel-plate resonator measurements of lambda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd(2-x)Ce(x)CuO(4-delta) (NCCO) crystal. We find that Deltalambda(T) has a power-law behavior for T相似文献   

19.
In tunneling spectroscopy of superconductors the density of states close to the surface or the interface to an insulating tunneling barrier is probed. For d-wave superconductors the particle–hole coherence results in interesting new phenomena at surfaces such as the formation of bound surface states at the Fermi level by Andreev reflection due to a sign change of the order parameter field in different k -directions. The probing of these states represents a phase-sensitive experiment allowing the determination of the order parameter symmetry in superconductors. We summarize the present experimental status with respect to the study of high-temperature superconductors (HTS). We discuss theoretically predicted consequences of a dominating d-wave order parameter in the hole-doped HTS on their tunneling spectra as well as on the physics of high-temperature superconductor Josephson junctions. A comparison of the tunneling spectra obtained for hole- and electron-doped HTS leads to the conclusion that the former have a d-wave, whereas the latter most likely have an anisotropic s-wave order parameter. We also address some unsettled questions related to the presence of a state with broken time-reversal symmetry at surfaces and interfaces of d-wave HTS and discuss specific features of d-wave tunnel junctions that have been predicted theoretically but still not been confirmed in experiments.  相似文献   

20.
The parent compounds of the high-temperature cuprate superconductors are Mott insulators.It has been generally agreed that understanding the physics of the doped Mott insulators is essential to understanding the mechanism of high temperature superconductivity.A natural starting point is to elucidate the basic electronic structure of the parent compound.Here we report comprehensive high resolution angle-resolved photoemission measurements on Ca_2CuO_2Cl_2,a Mott insulator and a prototypical parent compound of the cuprates.Multiple underl.ying Fermi surface sheets are revealed for the first time.The high energy waterfall-like band dispersions exhibit different behaviors near the nodal and antinodal regions.Two distinct energy scales are identified:a d-wave-like low energy peak dispersion and a nearly isotropic lower Hubbard band gap.These observations provide new information of the electronic structure of the cuprate parent compound,which is important for understanding the anomalous physical properties and superconductivity mechanism of the high temperature cuprate superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号