首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Although the invention of the metamaterials has stimulated the interest of many researchers and possesses many important applications, the basic design idea is very simple: composing effective media from many small structured elements and controlling its artificial EM properties. According to the effective-media model, the coupling interactions between the elements in metamaterials are somewhat ignored; therefore, the effective properties of metamaterials can be viewed as the “averaged effect” of the resonance property of the individual elements. However, the coupling interaction between elements should always exist when they are arranged into metamaterials. Sometimes, especially when the elements are very close, this coupling effect is not negligible and will have a substantial effect on the metamaterials’ properties. In recent years, it has been shown that the interaction between resonance elements in metamaterials could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of these recent developments in coupled metamaterials. For the “metamolecule” composed of several identical resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a “metacrystal” comprising an infinite number of resonators, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable coupled metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future.  相似文献   

2.
Recent years have seen a new wave of interest in layered media – namely, plasmonic multilayers – in several emerging applications ranging from transparent metals to hyperbolic metamaterials. In this paper, we review the optical properties of such subwavelength metal–dielectric multilayered metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials A number of fundamental electromagnetic effects unique to the latter are identified and demonstrated. Examples include the evolution of isofrequency contour shape from elliptical to hyperbolic, all-angle negative refraction, and nonlocality-induced optical birefringence. Analysis of the underlying physical causes, which are spatial dispersion and optical nonlocality, is also reviewed. These recent results are extremely promising for a number of applications ranging from nanolithography to optical cloaking.  相似文献   

3.
4.
太赫兹人工电磁媒质研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
鲍迪  沈晓鹏  崔铁军 《物理学报》2015,64(22):228701-228701
近年来, 随着太赫兹科学技术的发展, 越来越多的科学家向太赫兹间隙这一传统空白领域发起挑战. 其中, 人工电磁媒质因为能够设计太赫兹波段中紧缺的功能器件而受到广泛关注. 近年来, 对人工电磁媒质尤其是太赫兹方面的研究进展突飞猛进. 人工电磁媒质的性质不仅仅由其构成材料决定, 更与其结构单元的形状和空间排布密切相关. 本文介绍了人工电磁媒质在太赫兹波段的发展、原理、设计和应用, 并着重介绍完美吸波器和人工表面等离激元, 为太赫兹波段功能器件的研究提供了参考, 并对可能的发展方向予以展望.  相似文献   

5.
In this work, a brief review of the modern state of investigations in the field of linear and nonlinear electrodynamics is given for resonant nano-and microstructured composite media (metamaterials), whose effective permittivities and permeabilities can take negative values. Some promising lines of investigations and possible applications are discussed.  相似文献   

6.
Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting appli- cations recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.  相似文献   

7.
We review and critique the recent developments on multifunctional oxide materials, which are gaining a good deal of interest. Recongnizing that this is a vast area, the focus of this treatment is mainly on high-κ dielectric, ferroelectric, magnetic, and multiferroic materials. Also, we consider ferrimagnetic oxides in the context of the new, rapidly developing field of negative-index metamaterials. This review is motivated by the recent resurgence of interest in complex oxides owing to their coupling of electrical, magnetic, thermal, mechanical, and optical properties, which make them suitable for a wide variety of applications, including heat, motion, electric, and magnetic sensors; tunable and compact microwave passive components; surface acoustic wave devices; nonlinear optics; and nonvolatile memory, and pave the way for designing multifunctional devices and unique applications in spintronics and negative refraction-index media. For most of the materials treated here, structural and physical properties, preparation methods accompanied by particulars of synthesis of thin films, devices based on them, and some projections into their future applications are discussed.  相似文献   

8.
Research into the three-dimensional nanostructuring of photopolymers by ultrashort laser pulses has seen immense growth over the last decade. In this paper, we review the basic principles and the most important developments and applications of this technology. We discuss the mechanisms the linear and nonlinear light absorption at tight focusing conditions, and we present some typical laser writing conditions with numerical examples. The photochemistry of traditional and novel photopolymers together with strategies for their photosensitization for laser structuring by ultra-short pulses are discussed. We also discuss current and potential future applications in diverse fields such as metamaterials, plasmonics, micro-optics, and biomedical devices and implants.  相似文献   

9.
本文对可调太赫兹与光学超材料的研究进展进行了综述,并对其发展趋势和应用前景进行了展望。可以预见,可调超材料将继续成为超材料研究中的热点课题,并将成为引领光学器件和光学系统变革的潜在技术途径,对光学和太赫兹技术的发展将产生深远的影响。  相似文献   

10.
Recent results obtained on semiconductor-based photonic crystal devices are of great promise for future developments of photonic crystals and their applications to ‘all-photonic’ integrated circuits. Device performance mostly relies on the strong confinement of light thanks to photonic bandgap effects, but photonic crystals also exhibit remarkable dispersion properties in their transmission bands, thus opening the perspective of new optical functionalities. Slow light, supercollimation, superprism, and negative refraction effects are among the fascinating phenomena which strongly motivate the community. Studies in these directions parallel those on metamaterials, which are expected to provide a simultaneous control of the dielectric permittivity and of the magnetic permeability. In this article, we briefly review some important advances on photonic crystals and metamaterials, as these two topics received a particular attention during the “Nanosciences et Radioélectricité” workshop organized by CNFRS in Paris on the 20th and 21st of March 2007. To cite this article: J.-M. Lourtioz, C. R. Physique 9 (2008).  相似文献   

11.
The fabrication of three-dimensional photonic metamaterials faces numerous technological challenges. Many new concepts and ideas in the optics of metamaterials may be more easily tested in two spatial dimensions using the planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals exhibiting either positive or negative refraction, and strongly anisotropic metamaterials, etc, are demonstrated and used in novel microscopy and waveguiding schemes. PACS 73.20.Mf; 42.70.-a  相似文献   

12.
In the past twenty years, electromagnetic metamaterials represented by left-handed metamaterials(LHMs) have attracted considerable attention due to the unique properties such as negative refraction, perfect lens, and electromagnetic cloaks. In this paper, we present a comprehensive review of our group's work on metamaterials and metasurfaces. We present several types of LHMs and chiral metamaterials. As a two-dimensional equivalent of bulk three-dimensional metamaterials, metasurfaces have led to a myriad of devices due to the advantages of lower profile, lower losses, and simpler to fabricate than bulk three-dimensional metamaterials. We demonstrate the novel microwave metadevices based on metamaterials and metasurfaces: perfect absorbers and microwave patch antennas, including novel transmission line antennas,high gain resonant cavity antennas, wide scanning phased array antennas, and circularly polarized antennas.  相似文献   

13.
基于电磁超表面的透镜成像技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
范庆斌  徐挺 《物理学报》2017,66(14):144208-144208
电磁超表面属于超材料的一种,是由许多亚波长纳米结构单元组成的二维功能性平面结构.根据惠更斯原理,超表面阵列可以任意调控光波的相位、振幅和偏振.与传统器件相比,基于这种超材料设计的光学功能器件最大的优势是其具有极薄的厚度.本文首先介绍了广义斯涅耳定律以及纳米单元结构调控相位的基本原理,重点归纳了电磁超表面在透镜成像技术方面的研究进展,包括等离子体超表面、全介质超表面以及金属/介质混合式超表面在成像方面的应用,最后指出了超表面在成像方面尚未解决的前沿问题以及与实际应用接轨的重要问题,希望能为以后的深入研究提供一定的参考和借鉴.  相似文献   

14.
Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations. With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based on the reflection geometry and proposed corresponding model metamaterial systems to realize such effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD) simulations, and experiments were performed to successfully realize these ideas at both microwave and visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the transmission geometry are also reviewed.  相似文献   

15.
In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g., semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.  相似文献   

16.
We have numerically studied the characteristics of a slab waveguide loaded with dispersive anisotropic metamaterials. For two typical-structured metamaterials, we have analyzed the tensor expressions of frequency-dependent permittivity and permeability and discussed influences of the resonant cell structures on waveguiding characteristics. Numerical results show that the slab waveguide loaded with anisotropic metamaterials may, to some extent, behave as the slab waveguides of isotropic left-handed metamaterials (LHMs) core and conventional right-handed materials core. To one’s interest, some unusual properties are revealed in this paper, such as the coexistence of the fundamental guided mode and negative group velocity, and extraordinarily large normal or anomalous group velocity dispersion. Our results may find some potential applications in both linear and nonlinear optical technology.  相似文献   

17.
Jia&#  ming HAO&#  &#  &#  &#  &#  Min QIU&#  &#  &#  &#  LeiZHOU&#  &#  &#  &# 《Frontiers of Physics》2010,5(3):291
Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations. With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based on the reflection geometry and proposed corresponding model metamaterial systems to realize such effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD) simulations, and experiments were performed to successfully realize these ideas at both microwave and visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the transmission geometry are also reviewed.  相似文献   

18.
Metamaterial research is an extremely important global activity that promises to change our lives in many different ways. These include making objects invisible and the dramatic impact of metamaterials upon the energy and medical sectors of society. Behind all of the applications, however, lies the business of creating metamaterials that are not going to be crippled by the kind of loss that is naturally heralded by use of resonant responses in their construction. This review sets out some solutions to the management of loss and gain, coupled to controlled and nonlinear behavior, and discusses some critical consequences concerning stability. Under the general heading of active and tunable metamaterials, an international spectrum of authors collaborates here to present a set of solutions that addresses these issues in several directions. As will be appreciated, the range of possible solutions is really fascinating, and it is hoped that these discussions will act as a further stimulus to the field.  相似文献   

19.
Refractive index enhancement is crucial in the fields of lithography, imaging, optical communications, solar devices, and many more. We present a review of advancements in the process of designing high refractive index metamaterials, starting from quantum coupling and photonic bandgap materials to metamaterials utilizing deep subwavelength coupling to achieve ever-high values of refractive index. A particular attention is given to experimentally verified schemes in engineering a high index of refraction. The understanding of the evolution of material design from intrinsic electronic states manipulation to meta-atoms design is not only fascinating but also a prerequisite to developing successful devices and applications.  相似文献   

20.
We review the electromagnetic properties of metamaterials aimed at operating at infra-red wavelengths, keeping their potential applications in mind. Split ring resonators and periodically loaded transmission lines are considered with the main emphasis on the guide lines, design rules and characterization techniques. In this context, we address the various routes towards pushing up the operating frequency in the mid- and near- infrared region, with special attention on the breaking of scaling rules and on the technological challenges for metal and full dielectric approaches. To cite this article: D. Lippens, C. R. Physique 9 (2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号