首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A liquid chromatography–tandem mass spectrometry method for the simultaneous quantification of buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc), and norbuprenorphine glucuronide (NBUP-Gluc) in human urine was developed and fully validated. Extensive endogenous and exogenous interferences were evaluated and limits of quantification were identified empirically. Analytical ranges were 5–1,000 ng/mL for BUP and BUP-Gluc and 25–1,000 ng/mL for NBUP and NBUP-Gluc. Intra-assay and interassay imprecision were less than 17% and recovery was 93–116%. Analytes were stable at room temperature, at 4 °C, and for three freeze–thaw cycles. This accurate and precise assay has sufficient sensitivity and specificity for urine analysis of specimens collected from individuals treated with BUP for opioid dependence.  相似文献   

2.
A LCMS method was developed and validated for the determination of buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc), and norbuprenorphine glucuronide (NBUP-Gluc) in placenta. Quantification was achieved by selected ion monitoring of m/z 468.4 (BUP), 414.3 (NBUP), 644.4 (BUP-Gluc), and 590 (NBUP-Gluc). BUP and NBUP were identified monitoring MS2 fragments m/z 396, 414 and 426 for BUP, and 340, 364 and 382 for NBUP, and glucuronide conjugates monitoring MS3 fragments m/z 396 and 414 for BUP-Gluc, and 340 and 382 for NBUP-Gluc. Linearity was 1–50 ng/g. Intra-day, inter-day and total assay imprecision (% RSD) were <13.4%, and analytical recoveries were 96.2–113.1%. Extraction efficiencies ranged from 40.7–68%, process efficiencies 38.8–70.5%, and matrix effect 1.3–15.4%. Limits of detection were 0.8 ng/g for all compounds. An authentic placenta from an opioid-dependent pregnant woman receiving BUP pharmacotherapy was analyzed. BUP was not detected but metabolite concentrations were NBUP-Gluc 46.6, NBUP 15.7 and BUP-Gluc 3.2 ng/g.  相似文献   

3.
A method for simultaneous determination of buprenorphine (BUP), norbuprenorphine (NBUP), methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), cocaine, benzoylecgonine (BE), ecgonine methyl ester (EME), anhydroecgonine methyl ester (AEME), morphine, codeine, 6-acetylmorphine (6AM), heroin, 6-acetylcodeine (6AC), nicotine, cotinine, and trans-3′-hydroxycotinine (OH-cotinine) by liquid chromatography tandem mass spectrometry in oral fluid (OF) was developed and extensively validated. Acetonitrile (800 μL) and OF (250 μL) were added to a 96-well Isolute-PPT+protein precipitation plate. Reverse-phase separation was achieved in 16 min and quantification was performed by multiple reaction monitoring. The assay was linear from 0.5 or 1 to 500 μg/L. Intraday, interday, and total imprecision were less than 13% (n?=?20), analytical recovery was 92–114% (n?=?20), extraction efficiencies were more than 77% (n?=?5), and process efficiencies were more than 45% (n?=?5). Although ion suppression was detected for EME, cocaine, morphine, 6AC, and heroin (less than 56%) and enhancement was detected for BE and nicotine (less than 316%), deuterated internal standards compensated for these effects. The method was sensitive (limit of detection 0.2–0.8 μg/L) and specific (no interferences) except that 3-hydroxy-4-methoxyamphetamine interfered with AEME. No carryover was detected, and all analytes were stable for 24 h at 22 °C, for 72 h at 4 °C, and after three freeze–thaw cycles, except cocaine, 6AC, and heroin (22–97% loss). The method was applied to 41 OF specimens collected throughout pregnancy with a Salivette® OF collection device from an opioid-dependent BUP-maintained pregnant woman. BUP ranged from 0 to 7,400 μg/L, NBUP from 0 to 71 μg/L, methadone from 0 to 3 μg/L, nicotine from 32 to 5,020 μg/L, cotinine from 125 to 508 μg/L, OH-cotinine from 11 to 51 μg/L, cocaine from 0 to 419 μg/L, BE from 0 to 351 μg/L, EME from 0 to 286 μg/L, AEME from 0 to 7 μg/L, morphine from 0 to 22 μg/L, codeine from 0 to 1 μg/L, 6AM from 0 to 4 μg/L, and heroin from 0 to 2 μg/L. All specimens tested negative for EDDP and 6AC. This method permits a fast and simultaneous quantification of 16 drugs and metabolites in OF, with good selectivity and sensitivity.  相似文献   

4.
A validated method for simultaneous LCMSMS quantification of nicotine, cocaine, 6-acetylmorphine (6AM), codeine, and metabolites in 100 mg fetal human brain was developed and validated. After homogenization and solid-phase extraction, analytes were resolved on a Hydro-RP analytical column with gradient elution. Empirically determined linearity was from 5–5,000 pg/mg for cocaine and benzoylecgonine (BE), 25–5,000 pg/mg for cotinine, ecgonine methyl ester (EME) and 6AM, 50-5000 pg/mg for trans-3-hydroxycotinine (OH-cotinine) and codeine, and 250–5,000 pg/mg for nicotine. Potential endogenous and exogenous interferences were resolved. Intra- and inter-assay analytical recoveries were ≥92%, intra- and inter-day and total assay imprecision were ≤14% RSD and extraction efficiencies were ≥67.2% with ≤83% matrix effect. Method applicability was demonstrated with a postmortem fetal brain containing 40 pg/mg cotinine, 65 pg/mg OH-cotinine, 13 pg/mg cocaine, 34 pg/mg EME, and 525 pg/mg BE. This validated method is useful for determination of nicotine, opioid, and cocaine biomarkers in brain.  相似文献   

5.
A sensitive and specific method is presented to simultaneously quantify methadone, heroin, cocaine and metabolites in sweat. Drugs were eluted from sweat patches with sodium acetate buffer, followed by SPE and quantification by GC/MS with electron impact ionization and selected ion monitoring. Daily calibration for anhydroecgonine methyl ester, ecgonine methyl ester, cocaine, benzoylecgonine (BE), codeine, morphine, 6-acetylcodeine, 6-acetylmorphine (6AM), heroin (5-1000 ng/patch) and methadone (10-1000 ng/patch) achieved determination coefficients of >0.995, and calibrators quantified to within +/-20% of the target concentrations. Extended calibration curves (1000-10,000 ng/patch) were constructed for methadone, cocaine, BE and 6AM by modifying injection techniques. Within (N = 5) and between-run (N = 20) imprecisions were calculated at six control levels across the dynamic ranges with coefficients of variation of <6.5%. Accuracies at these concentrations were +/-11.9% of target. Heroin hydrolysis during specimen processing was <11%. This novel assay offers effective monitoring of drug exposure during drug treatment, workplace and criminal justice monitoring programs.  相似文献   

6.
A liquid chromatographic/electrospray ionization tandem mass spectrometric method for the quantification of the synthetic opiate buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine-3-beta-D-glucuronide (BUP-3-G) and norbuprenorphine-3-beta-D-glucuronide (NBUP-3-G) in human plasma was developed and validated. Identification and quantification were based on the following transitions: m/z 468 to 396 and 414 for BUP, m/z 414 to 326 and 340 for NBUP, m/z 644 to 468 for BUP-3-G and m/z 590 to 414 for NBUP-3-G. Calibration by linear regression analysis utilized deuteratated internal standards and a weighting factor of 1/x. The method was accurate and precise across a linear dynamic range of 0.6-50.0 ng ml(-1). Pretreatment of plasma samples using solid-phase extraction was sufficient to limit matrix suppression to <30% for all four analytes. The method proved to be suitable for the quantification of BUP and the related metabolites in plasma samples collected from BUP-maintained study participants.  相似文献   

7.
This study reports the development and validation of a method using hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) for the analysis of cocaine and its metabolites benzoylecgonine (BE), ecgonine methyl ester (EME), and cocaethylene (CE) in hair samples. Decontamination was performed as follows: Firstly, the aliquot of hair was briefly rinsed with 2 mL dichloromethane, then was washed three times with 10 mL 0.01 M phosphate buffer, pH 6, for 15 min, followed by 2 mL 2-propanol for less than 2 min, and, finally, a last rinse with 2 mL dichloromethane was again done. Cocaine compounds were extracted from 10 mg of hair by incubation with 2 mL 0.1 M HCl at 50 °C for 12 h and purified by solid phase extraction with Oasis MCX cartridges. Analysis was performed by LC-MS/MS using an Atlantis HILIC silica chromatographic column. The method was fully validated. Linearity was established over the concentration range 0.020–10.0 ng/mg for cocaine (COC), 0.010–10.0 ng/mg for BE and CE, and 0.005–2.0 ng/mg for EME, and the correlation coefficients were all >0.99. Extraction efficiency was >70% for all analytes. Limits of detection were 0.0005 ng/mg for CE and 0.001 ng/mg for the other analytes (COC, BE, and EME). Lower limits of quantification were the lowest points of the calibration curves with acceptable accuracy and precision (coefficient of variation ≤20%). Intra- and inter-day imprecision ranged between 1.5% and 9.5% and 0.7% and 12.6%, respectively. Intra- and inter-day inaccuracy ranged from 0.5% to 12.3% and from 0.7% to 7.1%, respectively. With regard to matrix effects, suppression was <27.5% in all cases. The method was applied to the analysis of several samples derived from forensic cases.  相似文献   

8.
In-line solid-phase extraction–capillary electrophoresis coupled with mass spectrometric detection (SPE–CE–MS) has been used for determination of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), codeine (COD), hydrocodeine (HCOD), and 6-acetylmorphine (6AM) in urine. The preconcentration system consists of a small capillary filled with Oasis HLB sorbent and inserted into the inlet section of the electrophoresis capillary. The SPE–CE–MS experimental conditions were optimized as follows: the sample (adjusted to pH 6.0) was loaded at 930 mbar for 60 min, elution was performed with methanol at 50 mbar for 35 s, 60 mmol L−1 ammonium acetate at pH 3.8 was used as running buffer, the separation voltage was 30 kV, and the sheath liquid at a flow rate of 5.0 μL min−1 was isopropanol–water 50:50 (v/v) containing 0.5% acetic acid. Analysis of urine samples spiked with the four drugs and diluted 1:1 (v/v) was studied in the linear range 0.08–10 ng mL−1. Detection limits (LODs) (S/N = 3) were between 0.013 and 0.210 ng mL−1. Repeatability (expressed as relative standard deviation) was below 7.2%. The method developed enables simple and effective determination of these drugs of abuse in urine samples at the levels encountered in toxicology and doping.  相似文献   

9.
A method for the simultaneous quantification of 20 cocaine, amphetamine, opiate, and nicotine analytes in meconium, the first neonatal feces, by liquid chromatography tandem mass spectrometry was developed and validated. Specimen preparation included methanol homogenization and solid phase extraction. Two injections were required to achieve sufficient sensitivity and linear dynamic range. Linearity ranged from 0.5–25 up to 500 ng/g (250 ng/g p-hydroxymethamphetamine), and correlation coefficients were >0.996. Imprecision was <10.0% CV, analytical recovery 85.5–123.1%, and extraction efficiencies >46.7% at three concentrations across the linear range. Despite significant matrix effects of −305.7–40.7%, effects were similar for native and deuterated analytes. No carryover, endogenous or exogenous interferences were observed, with analyte stability at room temperature, 4 °C, and −20 °C and on the autosampler >70%, except for 6-acetylmorphine, hydrocodone, oxycodone, and morphine. Method applicability was demonstrated by analyzing meconium from drug-exposed neonates.  相似文献   

10.
A novel sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS-MS) method simultaneously determined buprenorphine (BUP) and its active metabolite, norbuprenorphine (NBUP), and a coformulant, naloxone was developed, validated and applied successfully in humans. Buprenorphine-d 4 and norbuprenorphine-d 3 were used as the internal standard. The analysis was performed on a silica column, and the mobile phase was isocratic and composed of acetonitrile:2 mM ammonium formate in H2O (82:18, v/v). Mass spectrometry employed multiple reaction monitoring modes with transitions of m/z 468.1?C55.2 for BUP, 414.2?C101.2 for NBUP, 328.3?C310.3 for naloxone, 472.1?C59.2 for buprenorphine-d 4 and 417.2?C101.2 for norbuprenorphine-d 3. Lower limit of quantification (LLOQ) of the analytical method was 0.05 ng mL?1 for BUP, 0.1 ng mL?1 for NBUP and 0.025 ng mL?1 for naloxone, respectively. The standard calibration curves of BUP, NBUP and naloxone were linear over the concentration range of 0.05?C20 ng mL?1, 0.1?C20 ng mL?1 and 0.025?C20 ng mL?1, respectively. The precisions (RSD) and accuracies (RE) of LLOQ and other QC samples were in acceptable range, with RSD < 20% and RE ± 20% for LLOQ and RSD < 15% and RE within ±15% for QC samples. The method was accurate, precise and specific, and was applied to the pharmacokinetic study of buprenorphine in healthy volunteers.  相似文献   

11.
Steroid hormone concentrations are mostly determined by using different body fluids as matrices and applying immunoassay techniques. However, usability of these approaches may be restricted for several reasons, including ethical barriers to invasive sampling. Therefore, we developed an ultra-performance LC–MS–MS method for high-throughput determination of concentrations of cortisol, cortisone, dehydroepiandrosterone (DHEA), and DHEA sulfate (DHEAS) in small quantities of human nails. The method was validated for linearity, limits of detection and quantification, recovery, intra and interassay precision, accuracy, and matrix effect. Samples from 10 adult women were analyzed to provide proof-of-principle for the method’s applicability. Calibration curves were linear (r 2 > 0.999) in the ranges 10–5000 pg mg−1 for cortisol, cortisone, and DHEAS, and 50–5000 pg mg−1 for DHEA. Limits of quantification were 10 pg mg−1 for cortisol, cortisone, and DHEAS, and 50 pg mg−1 for DHEA. The sensitivity and specificity of the method were good, and there was no interference with the analytes. Mean recovery of cortisol, cortisone, DHEA, and DHEAS was 90.5%, 94.1%, 84.9%, and 95.9%, respectively, with good precision (coefficient of variation <14% for all analytes) and accuracy (relative error (%) −8.3% to 12.2% for all analytes). The median (pg mg−1, range) hormone concentrations were 69.5 (36–158), 65 (32–133), 212 (50–1077), and 246 (115–547) for cortisol, cortisone, DHEA, and DHEAS, respectively. This method enables measurement of cortisol, cortisone, DHEA, and DHEAS in small quantities of human nails, leading to the development of applications in endocrinology and beyond.  相似文献   

12.
The present work describes the first systematic study of electromembrane extraction (EME) from biological matrices under physiological conditions. Six basic drugs with protein binding in the range of 20–97% were extracted from untreated human plasma and whole blood through a supported liquid membrane (SLM) consisting of 1-ethyl-2-nitrobenzene impregnated in the walls of a hollow fiber, and into an acidified aqueous solution inside the lumen of the fiber. The electrical potential difference over the membrane reduced the protein binding of the drugs and transported the free drug fraction over the membrane. Recoveries in the range 25–65% were obtained with 10-min extraction time and an applied voltage of only 10 V over the SLM. Interday precision better than 20% RSD and linearity in the range 0.5–10 μg/mL were obtained for nortriptyline and methadone. Extraction from untreated whole blood was also demonstrated with recoveries in the range 19–51%.  相似文献   

13.
An LC-MS/MS method using 0.5 ml of oral fluid was developed for the determination of morphine, codeine, 6-monoacetylmorphine, methadone, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, benzoylecgonine, cocaine, delta-9-tetrahydrocannabinol, zolpidem, zopiclone, alprazolam, clonazepam, oxazepam, nordiazepam, lorazepam, flunitrazepam, diazepam, diphenhydramine and amitriptyline. The method was fully validated in terms of linearity (the method was linear between 1–5 μg/L and 100–200 μg/L) recoveries (7.5–82.6%), within-day and between-day precisions and accuracies (CV and MRE, both <15%), limits of detection (0.5 μ g/L) and quantitation (the lowest point on the calibration curve), relative ion intensities, freeze-and-thaw stability and matrix effect. The method was applied to preserved oral fluid collected by a special commercial device, the StatSure Saliva Sampler™.  相似文献   

14.
A simple procedure combining headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC/MS) to detect and quantify amphetamines, ketamine, methadone, cocaine, cocaethylene and ∆9-tetrahydrocannabinol (THC) in hair is described. This procedure allows, in a single sample, even scant, analysis of drugs requiring different analytical conditions. A hair sample (10 mg) is washed and subjected to acidic hydrolysis. Then the HS-SPME is carried out (10 min at 90 °C) for amphetamines, ketamine, methadone, cocaine and cocaethylene. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing acetic anhydride. After a chromatographic run, an alkaline hydrolysis for THC analysis is carried out in the same vial containing the hair sample previously used. For adsorption, the solid-phase microextraction needle is inserted into the headspace of the vial and the fibre is exposed for 30 min at 150 °C. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing N-methyl-N-(trimethylsilyl)trifluoroacetamide. The GC/MS parameters were the same for both chromatographic runs. The linearity was proved to be between 0.01 and 10.00 ng/mg. The repeatability (intra- and interday precision) was below 10% as the coefficient of variation for all compounds. The accuracy, as the relative recovery, was 96.2–103.5% (spiked samples) and 88.6–101.7% (quality control sample). The limit of detection ranged from 0.01 to 0.12 ng/mg, and the limit of quantification ranged from 0.02 to 0.37 ng/mg. Application of the procedure to real hair samples is described. To the best of our knowledge, the proposed procedure combining HS-SPME and GC/MS is the first one be to successfully applied to the simultaneous determination of most of the common recreational drugs, including THC, in a single hair sample.  相似文献   

15.
A rapid multi-analyte method has been developed for the simultaneous determination of pesticides and mycotoxins in milk by ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC–QqQ–MS/MS). A variety of methodologies has been evaluated, including solid-phase extraction (SPE), “dilute-and-shoot” (liquid–liquid extraction-based procedures), and QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based methods. The optimization and development process was carried out considering that the maximum residue level for aflatoxin M1 (AFM1) in milk in the European Union (EU) is set at 0.05 μg kg−1, which is the lowest tolerance in the target compounds. The selected method consisted of an extraction by SPE using C18 as sorbent and methanol as elution solvent. The final determination was performed by UHPLC–QqQ–MS/MS. Matrix-matched standard calibration was used for quantification, obtaining recoveries in the range 60–120% with relative standard deviations <25%, at three spiking levels: 0.5, 10, and 50 μg kg−1 (ten times lower for AFM1). Limits of quantification ranged from 0.20 to 0.67 μg kg−1, which were always below or equal to the established tolerance levels by the EU. Finally, the selected method was applied to different types of milk.  相似文献   

16.
Methylmercury (MeHg) and total mercury (THg) in seafood were determined using species-specific isotope dilution analysis and gas chromatography combined with inductively coupled plasma mass spectrometry. Sample preparation methods (extraction and derivation step) were evaluated on certified reference materials using isotopically enriched Hg species. Solid–liquid extraction, derivation by propylation and automated agitation gave excellent accuracy and precision results. Satisfactory figures of merit for the selected method were obtained in terms of limit of quantification (1.2 μg Hg kg−1 for MeHg and 1.4 μg Hg kg−1 for THg), repeatability (1.3–1.7%), intermediate precision reproducibility (1.5% for MeHg and 2.2% for THg) and trueness (bias error less than 7%). By means of a recent strategy based on accuracy profiles (β-expectation tolerance intervals), the selected method was successfully validated in the range of approximately 0.15–5.1 mg kg−1 for MeHg and 0.27–5.2 mg kg−1 for THg. Probability β was set to 95% and the acceptability limits to ±15%. The method was then applied to 62 seafood samples representative of consumption in the French population. The MeHg concentrations were generally low (1.9–588 μg kg−1), and the percentage of MeHg varied from 28% to 98% in shellfish and from 84% to 97% in fish. For all real samples tested, methylation and demethylation reactions were not significant, except in one oyster sample. The method presented here could be used for monitoring food contamination by MeHg and inorganic Hg in the future to more accurately assess human exposure.  相似文献   

17.
A fast, sensitive and specific liquid chromatography-mass spectrometry method has been developed for quantification of digoxin in human plasma. The method was optimized to bioequivalence studies aiming higher sensitivity and selectivity than previously published methods, in addition to shorter run time allowing high-throughput sample analyses from volunteers. Chromatographic separation was achieved by an RP-18e column hyphenated to an API 5000 mass spectrometer system set at negative electrospray ionization and operating in the MRM mode. Calibration curve was linear over a wide range of concentration (50.0–6000.0 pg mL−1), with the lower limit of quantification at 50.0 pg mL−1 and without interfering peaks at the retention time of digoxin (2.09 min). Dexamethasone was used as internal standard and samples were cleaned up by liquid-liquid extraction obtaining a mean recovery of 73.8%. Validation results confirmed inter-batch accuracy (−8.66 to 5.78%), precision (4.1–10.6%) and stability, in accordance with the U.S. Food and Drug Administration and the Brazilian National Health Surveillance Agency guidelines. The developed analytical method could be successfully applied to a single oral dose (0.25 mg), one-way, randomized, two-sequence, crossover bioequivalence study validating, up to date, the fastest analysis and the most sensitive and specific method already published for digoxin quantification.  相似文献   

18.
The objective of present research was to sinter nanosized Mn–Zn ferrites (MZF) at low temperature (≤1,000 °C) by avoiding the formation of nonmagnetic phase (hematite). For this purpose, MZF powder was synthesized by sol–gel auto combustion process at 220 °C and further calcined at 450 °C. In calcined powder, single phase (spinel) was confirmed by X-ray diffraction analysis. Pellets were pressed, having 43% of the theoretical density and showing 47 emu gm−1 saturation magnetization (M s). Various combinations of heating rate, dwelling time and gaseous environment were employed to meet optimum sintering conditions at low temperature (≤1,000 °C). It was observed that sintering under air or N2 alone had failed to prevent the formation of nonmagnetic (hematite) phase. However, hematite phase can be suppressed by retaining the green compacts at 1,000 °C for 180 min in air then further kept for 120 min in nitrogen. Under these conditions, spinel phase (comprising of nano crystallites), 90% of theoretical density and 102 emu gm−1 of saturation magnetization has been achieved.  相似文献   

19.
A simple and robust method using solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of 14 drugs of abuse and their metabolites (cocainics, amphetamine-like compounds, cannabinoids, and opiates) in surface waters has been developed. Seven SPE adsorbents (Oasis HLB, Oasis MCX, Oasis Wax, Supelselect HLB, Strata-X, Strata-XCW), amount of sorbent bed, water volume, and pH were investigated. The highest recoveries, as well as the simplest protocol, were obtained for Oasis HLB cartridges (6 mL/200 mg) using 250 mL of water. The proposed method was linear in a concentration range from 0.03–6 to 300–60,000 ng/L depending on the compound, with correlation coefficients higher than 0.998. Matrix effects have been studied in surface water samples, and several isotope-labeled internal standards have been evaluated as a way to compensate the signal suppression observed. Limits of detection (LODs) and quantification (LOQs) ranged from 0.01 to 1.54 ng/L and from 0.03 to 5.13 ng/L, respectively. Recoveries were 71–102% at the LOQ level and 77–104 at 50 ng/L. The intra-day and intermediate precisions were from 1% to 8% and from 2% to 11%, respectively. The present work reports for the first time the occurrence of drugs of abuse residues in surface water samples from the Natural Park of L’Albufera (Valencia, Spain). Codeine, cocaine, benzoylecgonine, ecgonine methylester, amphetamine, 3,4-methylendioxy methamphetamine, morphine, and methadone were quantified with median values of 11.10, 0.02, 5.59, 0.08, 0.21, 0.75 and 0.14 ng/L respectively, and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol was detected in one sample at levels <LOQ.  相似文献   

20.
A liquid chromatographic–mass spectrometric (LC–MS) method has been developed and validated for simultaneous determination of dehydroevodiamine and limonin from Evodia rutaecarpa in rat plasma. After addition of the internal standard, domperidone, plasma samples were extracted by liquid–liquid extraction with ethyl acetate and separated on an Apollo C18 column (250 mm × 4.6 mm, 5 μm), with methanol–0.01% formic acid water (60:40, v/v) as mobile phase, within a runtime of 12.0 min. The analytes were detected without interference in the selected ion monitoring (SIM) mode with positive electrospray ionization. The linear range was 1.0–500 ng mL−1 for dehydroevodiamine and 2.0–1,000 ng mL−1 for limonin, with lower limits of quantitation of 1.0 and 2.0 ng mL−1, respectively. Intra-day and inter-day precision were within 6.0% and 10.9%, respectively, for both analytes, and the accuracy (relative error, RE, %) was less than 4.8% and 6.5%, respectively. The validated method was successfully applied to a comparative pharmacokinetic study of dehydroevodiamine and limonin in rat plasma after oral administration of dehydroevodiamine, limonin, and an aqueous extract of Evodiae fructus. The results indicated there were obvious differences between the pharmacokinetic behavior after oral administration of an aqueous extract of Evodiae fructus compared with single substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号