首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Funneling and functionalization of a mixture of lignin‐derived monomers into a single high‐value chemical is fascinating. Reported herein is a three‐step strategy for the production of terephthalic acid (TPA) from lignin‐derived monomer mixtures, in which redundant, non‐uniform substitutes such as methoxy groups are removed and the desired carboxy groups are introduced. This strategy begins with the hydro‐treatment of corn‐stover‐derived lignin oil over a supported molybdenum catalyst to selectively remove methoxy groups. The generated 4‐alkylphenols are converted into 4‐alkylbenzoic acids by carbonylation with carbon monoxide. The Co‐Mn‐Br catalyst then oxidizes various alkyl chains into carboxy groups, transforming the 4‐alkylbenzoic acid mixture into a single product: TPA. For this route, the overall yields of TPA based on lignin content of corn stover could reach 15.5 wt %, and importantly, TPA with greater than 99 % purity was obtained simply by first decanting the reaction mixture and then washing the solid product with water.  相似文献   

2.
Microbial Lipid Production from Corn Stover via Mortierella isabellina   总被引:1,自引:0,他引:1  
Microbial lipid is a promising source of oil to produce biofuel if it can be generated from lignocellulosic materials. Mortierella isabellina is a filamentous fungal species featuring high content of oil in its cell biomass. In this work, M. isabellina was studied for lipid production from corn stover. The experimental results showed that M. isabellina could grow on different kinds of carbon sources including xylose and acetate, and the lipid content reached to 35 % at C/N ratio of 20. With dilution, M. isabellina could endure inhibition effects by dilute acid pretreatment of corn stover (0.3 g/L furfural, 1.2 g/L HMF, and 1 g/L 4-hydroxybenozic acid) and the strain formed pellets in the cell cultivations. An integrated process was developed combining the dilute acid pretreatment, cellulase hydrolysis, and cell cultivation for M. isabellina to convert corn stover to oil containing fungal biomass. With 7.5 % pretreated biomass solid loading ratio, the final lipid yield from sugar in pretreated biomass was 40 % and the final lipid concentration of the culture reached to 6.46 g/L.  相似文献   

3.
Enzymatic conversion of oligomeric xylose and insoluble xylan remaining after effective pretreatment offers significant potential to improve xylan-to-xylose yields while minimizing yields of degredation products and fermentation inhibitors. In this work, a commercial enzyme cocktail is demonstrated to convert up to 70?% of xylo-oligomers found in dilute acid-pretreated hydrolyzate liquor at varying levels of dilution when supplemented with accessory enzymes targeting common side chains. Commercial enzyme cocktails are also shown to convert roughly 80?% of insoluble xylan remaining after effective high-solids, dilute acid pretreatment.  相似文献   

4.
In this work, the effect of adaptation on P. stipitis fermentation using acid-pretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.  相似文献   

5.
Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave® reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 °C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.  相似文献   

6.
Liu  Ling  Cai  Yuyuan  Li  Hong  Zhao  Shumiao  He  Mingxiong  Hu  Guo-quan  Liang  Yunxiang  Peng  Nan  Hu  Jinglong 《Applied biochemistry and biotechnology》2019,189(1):129-143

Agro-stovers are the most abundant substrates for producing lactic acid, which has great potential application in the production of biodegradable and biocompatible polylactic acid polymers. However, chemical pretreatments on agro-stovers generate inhibitors that repress the subsequent lactic acid fermentation. In this study, three bacterial strains (Enterococcus faecalis B101, Acinetobacter calcoaceticus C1, and Pseudomonas aeruginosa CS) isolated from dye-polluted soils could utilize phenolic inhibitor mimics (vanillin, 4- hydroxybenzaldehyde, or syringaldehyde) from alkaline pretreated corn stovers as a sole carbon source. Lactic acid titer increased from 27.42 g/L (Bacillus coagulans LA204 alone) to 44.76 g/L (CS and LA204) using 50 g/L glucose with 1 g/L 4-hydroxybenzaldehyde added. Lactic acid production from 50 g/L ammonia pretreated corn stover was increased nearly twofold by inoculating phenolic degradation bacteria and lactic acid bacteria (C1& Lactobacillus pentosus FL0421). In the control (FL0421 alone), only 16.98 g/L of lactic acid was produced. The isolated and identified strains degraded the phenolic compounds and increased the lactic acid production from glucose and ammonia pretreated corn stover. These characteristics of the strains support industrial application with efficient in situ detoxification of phenolic compounds during lactic acid production from agro-stovers using simultaneous saccharification and fermentation (SSF).

  相似文献   

7.
Corn stover silage (CSS) was pretreated by Phanerochaete chrysosporium in solid-state fermentation (SSF), to enhance methane production via subsequent anaerobic digestion (AD). Effects of washing of corn stover silage (WCSS) on the lignocellulosic biodegradability in the fungal pretreatment step and on methane production in the AD step were investigated with comparison to the CSS. It was found that P. chrysosporium had the degradation of cellulose, hemicellulose, and lignin of CSS up to 19.9, 32.4, and 22.6 %, respectively. Consequently, CSS pretreated by 25 days achieved the highest methane yield of 265.1 mL/g volatile solid (VS), which was 23.0 % higher than the untreated CSS. However, the degradation of cellulose, hemicellulose, and lignin in WCSS after 30 days of SSF increased to 45.9, 48.4, and 39.0 %, respectively. Surface morphology and Fourier-transform infrared spectroscopy analyses also demonstrated that the WCSS improved degradation of cell wall components during SSF. Correspondingly, the pretreatment of WCSS improved methane production by 19.6 to 32.6 %, as compared with untreated CSS. Hence, washing and reducing organic acids (such as lactic acid, acetic acid, propionic acid, and butyric acid) present in CSS has been proven to further improve biodegradability in SSF and methane production in the AD step.  相似文献   

8.
9.
Bioconversion of undetoxified hemicellulosic hydrolyzate from steam-exploded corn stover was investigated with a domesticated Pichia stipitis CBS 5776. The countercurrent washing was applied to recover sugars from the steam-exploded corn stover, which could enrich sugars in washing liquor and give an efficient saving of water. Acid concentration, reaction temperature, and time were optimized for the acid post-hydrolysis of oligosaccharides in steam-exploded prehydrolyzate by a central composite design and response surface methodology. The domestication of P. stipitis to the hydrolyzate resulted in improving sugar consumption and ethanol yield by gradually increasing the ratio of hydrolyzate in the medium. Recycling utilization of the domesticated yeast demonstrated that the yeast kept a stable ability of fermenting both hexose and pentose in the undetoxified hydrolyzate. The sugar consumption and ethanol yield were over 90 and 80?%, respectively.  相似文献   

10.
采用吸附法对来源于扩展青霉Penicillium expansum的脂肪酶进行了固定化.从20种不同来源的树脂中筛选出固定化效率高且价格低廉的D4020树脂作为载体,系统研究了固定化条件对固定化效率及固定化酶转酯活力的影响.结果表明,最适加酶量、缓冲液pH和吸附时间分别为0.7 g/g、9.4和4 h.冻干时添加0.5%的半乳糖有助于提高固定化酶的转酯活力.在上述优化条件下,固定化酶的转酯活力为404.0 U/g,而所用的游离酶不能催化该转酯反应.利用该固定化酶催化玉米油转酯反应生产生物柴油时,叔戊醇为适宜的反应介质,其最适添加量为0.5 ml/g;适宜的酶量、加水量和反应温度分别为60.6 U/g、油重的1.2%和35℃.按醇/油摩尔比为1的比例分别在反应0、2和6 h时加入甲醇,在优化反应条件下,反应24 h后甲酯产率达85.0%;固定化脂肪酶具有较好的操作稳定性,反应10批次时,相对酶活力为62.8%.  相似文献   

11.
Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450?°C. The bio-oil??s physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography?Cmass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35?wt% were obtained from medium-sized (0.68?C1.532?mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51?wt% were obtained from 1?% H2SO4-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.  相似文献   

12.
Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.  相似文献   

13.
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.  相似文献   

14.
The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R o), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26?mg/mL, while furfural increased from 1.04 to 1.33?mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23?mg/mL as formate rose from 0.62 to 1.83?mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.  相似文献   

15.
A 1,1′‐bi‐2‐naphthol (BINOL)‐based chiral aldehyde in combination with ZnII shows a highly enantioselective fluorescent response toward functional chiral amines at λ>500 nm. However, the combination of salicylaldehyde and ZnII gives the same fluorescent enhancement for both enantiomers of a functional chiral amine at λ=447 nm. By using the fluorescent responses of the combination of the BINOL‐based chiral aldehyde, salicylaldehyde and ZnII at the two emission wavelengths, both the concentration and enantiomeric composition of functional chiral amines such as amino alcohols, diamines, and amino acids can be simultaneously determined by a single fluorescent measurement. This work provides a simple and convenient method for chiral assay.  相似文献   

16.
17.
This paper proposes a modified pseudoequilibrium calculation, which gives almost the same results as those of kinetic calculations to determine the composition of hydrogen and nitrogen plasmas at atmospheric pressure. The computing time is two to three orders of magnitude faster than that of the kinetic calculations. First, according to experimental results, a relationship between the electron temperature Te and the heavy species one Th has been proposed. The ratio Te/Th varies as a function of the logarithm of the ratio ne/n e max , e max being the electron density in the plasma core for which equilibrium is achieved e max ~ 10 23 ). The kinetic calculations have been performed assuming the microreversibility where the backward kinetic rate coefficient kb is calculated by kd/kb=Kx, where kd is the direct kinetic coefficient and Kx the molar fraction equilibrium constant. When electrons are involved in both direct and backward reactions, kd and Kx are expressed as functions of Te . However, when the direct reaction involves electrons while the backward one is due to collisions between heavy species (or the reverse), a temperature T* between Te and Th is introduced. T* is determined as a function of the ratio of the electron flux to that of neutral species in such a way that T*=Te for ne > 1023 and T*=Th for low values of ne(ne < 1015 m–3). Compared to hydrogen, the nitrogen composition exhibits a very abrupt variation between 6000 and 6500 K, corresponding to a shift from the dissociation-dominated regime to that of ionization. It occurs because dissociation of nitrogen starts almost simultaneously with its ionization, which is not the case of H2, for which dissociation is terminated long before ionization starts. If the charge transfer reaction, whose activation energy is low for both gases, is neglected, in both cases the electron density increases drastically below 9000 K. These results are quite similar to those obtained when calculating the composition with the multitemperature mass action law. The kinetic calculations are dominated by the reactions with a low activation energy: dissociation, dissociative recombination and charge transfer. Thus, a modified pseudoequilibrium calculation has been introduced, the plasma composition being calculated with the equilibrium constants corresponding to low activation energies[X2 2X, e+X 2 + 2X, X 2 + +X X+ + X2 both for hydrogen (X=H) and nitrogen (X=N)] at the temperature T* between Te and Th. The results are in very good agreement with those of the kinetic calculations.  相似文献   

18.
Corn (Zea mays L.) fiber, which is the seed coat and residual endosperm left after grain processing, is a low-value residue that contains carbohydrates and aromatic compounds that could provide value-added coproducts. Treatment of corn fiber with NaOH and assessment by gas chromatography indicated a prevalence of ferulic acid, with about 90% ester-linked in the cell walls. p-Coumaric acid was much lower at about 10% of the amount of ferulic acid. Histochemical reactions employing acid phloroglucinol and diazotized sulfanilic acid indicated the presence of phenolic acids in cell walls of the pericarp and aleurone layer. Various protocols were tested using milled corn fiber and pretreatment with commercial ferulic acid esterases before cellulase treatment, and dry weight loss and sugars and phenolic acids released into the filtrate were evaluated. Ferulic acid esterases effectively degraded corn fiber and released substantial amounts of ferulic acid and sugars (e.g., glucose and xylose) in the incubation medium. Light microscopy showed that ferulic acid esterase substantially disrupted the aleurone layer but caused little visible damage to the lignified pericarp cell walls. Amounts of compounds released varied with protocols, and one study with various milling methods showed that esterase pretreatment followed by cellulase released about 2.8 to 4.4 and 1.5 to 2.9 times more ferulic acid and glucose, respectively, than cellulase alone. The highest levels for one lot of corn fiber with esterase pretreatment followed by cellulase were 3.9 and 218 mg/g of ferulic acid and glucose, respectively.  相似文献   

19.
黄剑芳 《化学教育》2022,43(3):105-115
针对物质结构教学的抽象性,开发了一套基于三维虚拟技术的物质结构教学软件,可对结构模型进行旋转、平移、缩放、切割、镜像、插入或删除原子(团)及启停预先设置的动画等操作,强大的交互功能不仅能对分子或晶体结构如构造异构、立体异构、晶体的堆积方式、晶胞的划分、配位数、晶体结构中的空隙及空间利用率等问题进行效果极佳的可视化教学,另一方面,通过对B12与C60分子空间构型转变的探究揭示数学构型的重要性,通过对六方晶胞占有原子个数的探究修正晶胞模型,通过对金属晶体的4种基本堆积方式成因的探究提出“半密置层”概念来完善紧密堆积规律等案例,展示出三维虚拟技术在微观结构探索发现方面的巨大潜力。  相似文献   

20.
A facile, sensitive, and accurate liquid chromatographic method with ultraviolet detection was developed for the determination of caffeic acid tetramer in rat plasma. Chromatographic separation was performed on an YMC C18 10 μm column (250 × 4.6 mm) using acetonitrile and phosphate buffer (19:81, v/v) as mobile phase at a flow rate of 1 mL min?1. The UV detection wavelength was set at 252 nm. The method showed good linearity in the range of 1–150 μg mL?1 with a satisfactory correlation coefficient (r) of 0.997. The limit of detection was 20 ng mL?1 while inter- and intra-day precisions were less than 5.39 and 5.48%, respectively. Furthermore, the accuracy ranged from 98.27 to 103.76% with high extraction recoveries of caffeic acid tetramer from plasma greater than 88.0%. This practical methodology opens a facile and effective pathway for a pharmacokinetic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号