首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD+/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.  相似文献   

2.
The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl?Cacyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3?C1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.  相似文献   

3.
The NHase encoding gene of mutant 4D was isolated by PCR amplification. The NHase gene of mutant 4D was successfully cloned and expressed in Escherichia coli by using Ek/LIC Duet cloning kits (Novagen). For the active expression of the NHase gene, the co-expression of small cobalt transporter gene (P-protein gene) has also been co-expressed with NHase gene E. coli. The nucleotide sequence of this NHase gene revealed high homology with the H-NHase of Rhodococcus rhodochrous J1. The recombinant E. coli cells showed higher NHase activity (5.9?U/mg?dcw) as compared to the wild (4.1?U/mg?dcw) whereas it is less than the mutant strain (8.4?U/mg?dcw). Addition of cobalt ion in Luria?CBertani medium is needed up to a very small concentration (0.4?mM) for NHase activity. The recombinant E. coli exhibited maximum NHase activity at 6?h of incubation and was purified with a yield of 56?% with specific activity of 37.1?U/mg protein.  相似文献   

4.
Consolidated bioprocessing of lignocellulose for ethanol production is realized by expressing cellulase enzymes on ethanologenic strain. In this study, an ethanologenic Escherichia coli ZY81 was constructed by integrating pyruvate decarboxylase gene pdc and alcohol dehydrogenase gene adhB from Zymomonas mobilis into the genome of E. coli JM109 to obtain the capability of ethanol production. Then, the β-glucosidase gene bglB from Bacillus polymyxa was cloned and secretively expressed in E. coli ZY81. The recombinant strain E. coli ZY81/bglB showed an obvious activity of β-glucosidase in extracellular location with more than half in periplasmic space. EDTA was found to promote the release of the periplasmic proteins by approximately tenfold. E. coli ZY81/bglB utilized cellobiose as sole carbon source for ethanol production with 33.99 % of theoretical yield.  相似文献   

5.
An R-specific carbonyl reductase from Candida parapsilosis (CprCR) catalyzes the transformation of (R)-1-phenyl-1,2-ethanediol from 2-hydroxyacetophenone. The gene rcr coding CprCR contains a few codons rarely used by Escherichia coli. In order to improve chiral alcohol production, three codon variants Δ24, aRCR, and mRCR of CprCR were designed through truncation of 4–27 bp disorder sequence at the 5′-terminus or/and adaption of nine rare codons. The effects of codon optimization on enzyme activity, protein production, and biotransformation were studied. Among these three types, the disorder sequence-truncated and rare codon-adapted variant mRCR presents the highest enzyme activity. When compared with CprCR, mRCR showed an increase of 35.6% in the total activity of cell-free extracts. The specific activity of mRCR presented similar increase in the cell-free extract with purified protein, which suggested that the codon optimization caused positive effect on protein productivity of variant enzyme. When microbial cells concentration was 30% (w/v), the molar conversion yield and enantiomeric excess of the mRCR variant reached 86.4% and 93.6%, which were increased 36.5% and 15.8% than those of wild-type at a high substrate concentration of 5 g/L. The work will supply a new method for improving chiral alcohol preparation with codon engineered microorganisms.  相似文献   

6.
The 5-aminolevulinate (ALA) synthase gene (hemA) from Agrobacterium radiobacter zju-0121, which was cloned previously in our laboratory, contains several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was picked out as the host to construct an efficient recombinant strain. Cell extracts of the recombinant E. coli were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under the appropriate conditions. The results indicated that the activity of ALA synthase expressed in Rosetta(DE3)/pET-28a(+)-hemA was about 20% higher than that in E. coli BL21(DE3). Then the effects of precursors (glycine and succinate) and glucose, which is an inhibitor for ALA dehydratase as well as the carbon sources for cell growth, on the production of 5-aminolevulinate were investigated. Based on an optimal fed-batch culture system described in our previous work, up to 6.5 g/l (50 mM) ALA was produced in a 15-l fermenter.  相似文献   

7.
Endonuclease I is a widely distributed periplasmic or extracellular enzyme. A method for the high-level production of recombinant AsEndI (endonuclease I from Aliivibrio salmonicida) in Escherichia coli with secretion expression is investigated. The coding sequence of AsEndI gene was assembled according to the E. coli codon usage bias, and AsEndI was expressed in the periplasm of E. coli TOP10 with a C-terminal 6× His-tagged fusion. The recombinant AsEndI (His-AsEndI) was purified by Ni-NTA resin with a yield of 1.29?×?107 U from 1-L LB medium. His-AsEndI could be classified into Ca2+/Mg2+-dependent nucleases and showed highest nuclease activity to dsDNA at pH 8.0 and 37 °C. His-AsEndI is highly active in a broad range of salt concentration range up to 1.0 M with optimal NaCl concentration at 0.4 M. His-AsEndI can effectively remove DNA contamination in RNA sample or in PCR reagents to the level that cannot be detected by highly sensitive nested PCR and without adverse effects on the subsequent PCR reaction. His-AsEndI can remove DNA contamination at high salt conditions, especially for the DNA that may be shielded by DNA-binding protein at low salt conditions.  相似文献   

8.
The 1014 nucleotides long gene-encoding β-mannanase from Bacillus subtilis strain MA139 was cloned using PCR. To obtain high expression levels in Pichia pastoris, the β-mannanase gene was optimized according to the codon usage bias of P. pastoris and fused downstream of GAP promoter. The reconstituted plasmid pGAP-mann was transformed into P. pastoris X-33 strain to constitutively express β-mannanase. When cultured at 28 °C for 3 days protein yields up to 2.7 mg/mL was obtained with the enzyme activity of up to 230 U/mL. In comparison, wild-type gene product yielded 1.9 mg/mL and 170 U/mL, respectively indicating that the protein yield and enzyme activity were significantly improved by codon modification. After purification, the enzyme properties were characterized. The optimal activity was at pH 6.0 and 50 °C. In the pH range of 3.0 to 9.0, β-mannanase showed above 60% of its peak activity. Among the numerous ions tested copper significantly inhibited the enzyme activity. These results suggested that codon-optimized β-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals.  相似文献   

9.
A 3-hydroxyisobutyrate dehydrogenase-encoding gene mmsB has been identified as one of the key genes responsible for the enhanced organic solvent tolerance (OST) of Pseudomonas putida JUCT1. In this study, the OST-related effect of two 3-hydroxyacid dehydrogenase family genes (mmsB and zwf) was investigated in Escherichia coli JM109. It was noted that the growth of E. coli JM109 was severely hampered in 4 % decalin after zwf knockout. Additionally, its complementation resulted in significantly enhanced solvent tolerance compared with its parent strain. Furthermore, E. coli JM109 carrying mmsB showed better OST capacity than that harboring zwf. To construct E. coli strains with an inheritable OST phenotype, mmsB was integrated into the genome of E. coli JM109 by red-mediated recombination. Using E. coli JM109(DE3) (ΔendA::mmsB) as host strain, whole-cell biocatalysis was successfully carried out in an aqueous/butyl acetate biphasic system with a remarkably improved product yield.  相似文献   

10.
The production of α-melanocyte-stimulating hormone (α-MSH), a peptide hormone composed of 13 amino acids, is attempted by recombinant expression using E. coli as the host. To achieve this aim, a synthetic gene containing eight tandem repeats of msh gene (8msh) was designed for ribosomal synthesis of 8 α-MSH. The merit of the strategy is to diminish the peptide toxicity against the host cell and to achieve a higher production yield. Pepsin cleavage sites are introduced between the peptides for enzymatic proteolysis to obtain the monomeric peptide of α-MSH. The constructed plasmid was transformed into different strains of E. coli hosts, and E. coli XL1-Blue with gene 8msh revealed the highest yield of 8 α-MSH. Although 8 α-MSH was fractionalized in the insoluble pellets after cell lysis, pepsin cleavage was able to produce soluble α-MSH peptide, as analyzed and confirmed by mass spectrometry and peptide activity assays. The production of α-MSH was quantified using HPLC with a yield of 42.9 mg/L of LB culture. This study demonstrates the feasibility of producing α-MSH using recombinant expression of tandem repeat gene. The production procedure involves minimal post-treatment and processing and can be scaled up for industrial application.  相似文献   

11.
This study was aimed at increasing the production of the recombinant human ADAM15 disintegrin domain (RADD) in Escherichia coli by releasing the rare codons and restricting amino acid residues. Three different strategies for increasing RADD production were examined: to select the suitable host strain, to optimize the rare codons, and to delete the amino acids residues. The total fusion protein glutathione-S-transferase (GST)-RADD concentration of 298 mg/l and 326 mg/l were achieved by selecting E. coli Rosetta (DE3) as the host strain and by changing GGA to GGC at the GST-RADD cassette, respectively. The RADD concentration was increased by 35.7% by eliminating the “Pro-Glu-Phe” residues at the GST–RADD junction. By combinational utilizing the preferred codon introduction and amino acid sequence optimization in E. coli Rosetta (DE3), the highest RADD concentration of 68 mg/l was achieved. The proposed strategy may provide an alternative approach for other enhanced recombinant protein production by E. coli.  相似文献   

12.
13.
With the help of Tn5 transposon technique, gene yfjB encoding NAD kinase in Escherichia coli (E. coli) was inserted into chromosome of recombinant E. coli polyhydroxybutyrate (PHB) containing PHB synthesis operon integrated in the host genome. After successful transposition of an extra yfjB gene copy into genome, the selected recombinant named E. coli PHBTY4 showed stronger NAD kinase activity than that of E. coli PHB. Shake flask studies suggested that both cell dry weight and PHB accumulation were significantly increased in E. coli PHBTY4 compared with that of the control. E. coli PHBTY4 produced approximately 23 g/L PHB compared with its control which synthesized only 10 g/L PHB when grown under the same conditions in a 6 L fermentor after 32 h of cultivation. In addition, E. coli PHBTY4 maintained high genetic stability during the cultivation processes. These results revealed a practical method to construct genetically stable strains harboring extra NAD kinase gene to enhance NADP(H)-dependent bio-reactions.  相似文献   

14.
Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium’s heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene’s effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.  相似文献   

15.
A β-galactosidase gene from Aspergillus oryzae was engineered utilizing codon usage optimization to be constitutively and highly expressed in the Pichia pastoris SMD1168H strain in a high-cell-density fermentation. After fermentation for 96 h in a 50-L fermentor using glucose and glycerol as combined carbon sources, the recombinant enzyme in the culture supernatant had an activity of 4,239.07 U mL?1 with o-nitrophenyl-β-d-galactopyranoside as the substrate, and produced a total of extracellular protein content of 7.267 g L?1 in which the target protein (6.24 g L?1) occupied approximately 86 %. The recombinant β-galactosidase exhibited an excellent lactose hydrolysis ability. With 1,000 U of the enzyme in 100 mL milk, 92.44 % lactose was degraded within 24 h at 60 °C, and the enzyme could also accomplish the hydrolysis at low temperatures of 37, 25, and 10 °C. Thus, this engineered strain had significantly higher fermentation level of A. oryzae lactase than that before optimization and the β-galactosidase may have a good application potential in whey and milk industries.  相似文献   

16.
17.
To explore a better expression system for the production of keratinase, the keratinase gene from Bacillus licheniformis BBE11-1 was expressed in Escherichia coli, Bacillus subtilis, and Pichia pastoris. The corresponding recombinant keratinases were named ker E, ker B, and ker P, respectively. All recombinant keratinases had an optimal pH at 10 although the pH stability of ker E and ker P was higher than that of ker E. The optimal temperature and thermostability of ker P were enhanced compared with those of ker E and ker B. The recombinant keratinases were inhibited by Mn2+ but experienced little influence from other metal ions. Furthermore, all recombinant keratinases could retain almost 80 % activity after treatment with 1 M hydrogen peroxide for 5 h. Under optimized conditions in a 3-L fermenter, the maximum keratinase activities obtained from recombinant B. subtilis and P. pastoris were 3,010 and 1,050 U/mL, respectively. This maximum keratinase activity from B. subtilis is the highest activity ever reported for any bacterial strain. These results indicate that B. subtilis is the ideal host for keratinase production, with potential applications in textile processing and feed supplements.  相似文献   

18.
An efficient system for the production of (R)-hydroxyalkanoicacids (RHAs) was developed in natural polyhydroxyalkanoate (PHA)-producing bacteria and recombinant Escherichia coli. Acidic alcoholysis of purified PHA and in vivo depolymerization of PHA accumulated in the cells allowed the production of RHAs. In recombinant E. coli, RHA production was achieved by removing CoA from (R)-3-hydroxyacyl-CoA and by in vivo depolymerization of PHA. When the recombinant E. coli harboring the Ralstonia eutropha PHA biosynthesis genes and the depolymerase gene was cultured in a complex or a chemically defined medium containing glucose, (R)-3-hydroxybutyric acid (R3HB) was produced as monomers and dimers. R3HB dimers could be efficiently converted to monomers by mild alkaline heat treatment. A stable recombinant E. coli strain in which the R. eutropha PHA biosynthesis genes were integrated into the chromosome disrupting the pta gene was constructed and examined for the production of R3HB. When the R. eutropha intracellular depolymerase gene was expressed by using a stable plasmid containing the hok/sok locus of plasmid R1, R3HB could be efficiently produced.  相似文献   

19.
The katA gene that encodes catalase (CAT) in Bacillus subtilis WSHDZ-01 was overexpressed in B. subtilis WB600 and B. subtilis WSHDZ-01. The CAT yield in both transformed strains was significantly improved compared to that in the wild-type WSHDZ-01 in shake flask culture. When cultured in a 3-L stirred tank reactor (STR), the recombinant CAT activity in B. subtilis WSHDZ-01 could be improved by 419 %, reaching up to 39,117 U/mL and was 8,149.4 U/mg dry cell weight, which is the highest activity reported in Bacillus sp. However, the recombinant CAT in B. subtilis WB600 cultured in a 3-L STR was not significantly improved by any of the common means for process optimization, and the highest CAT activity was 3,673.5 U/mg dry cell weight. The results suggest that self-cloning of the complete expression cassette in the original strain is a reasonable strategy to improve the yield of wild-type enzymes.  相似文献   

20.
Amylomaltase catalyzes the formation of large-ring cyclodextrins (LR-CDs) from starch. This study aims to construct the recombinant amylomaltase from Corynebacterium glutamicum and to characterize the purified enzyme with the emphasis on the profile of LR-CDs production. A novel amylomaltase from Corynebacterium glutamicum ATCC 13032 was cloned and expressed in Escherichia coli BL21 (DE3) using the expression vector pET-19b. The open reading frame of amylomaltase gene of 2,121 bp (encoding the polypeptide of 706 amino acid residues) was obtained with the N-terminal His-tag fragment of 69 bp attached before the start codon of the amylomaltase gene. The deduced amino acid sequence showed a low sequence identity (20?C25%) to those thermostable amylomaltases from Thermus sp. The maximum enzyme activity was obtained when the recombinant cells were cultured at 37 °C for 2 h after induction with 0.4 mM isopropyl thio-??-D-galactoside (IPTG). The enzyme was 11-fold purified with a yield of 30% by a HiTrap affinity column. The purified amylomaltase showed a single band of 84 kDa on a 7.5% SDS-PAGE. When the enzyme acted on pea starch, it catalyzed an intramolecular transglucosylation (cyclization) reaction that produced LR-CDs or cycloamyloses (CA). The product profile was dependent on the incubation time and the enzyme concentration. Shorter incubation time gave larger LR-CDs as principal products. At 4 h incubation, the product was composed of a mixture of LR-CDs in the range of CD19?CCD50, with CD27?C28 as products with highest amount. It is noted that CD19 was the smallest product in all conditions tested. The enzyme also catalyzes intermolecular transglucosylation on various malto-oligosaccharides, with maltose as the smallest substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号