首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Laser flash photolysis and an external magnetic field have been used for the study of the interaction of 4-nitroquinoline-1-oxide (4NQO) with some indole derivatives, amino acids, tyrosine and tryptophan, and model proteins, lysozyme and bovine serum albumin. In an aprotic medium, photoinduced electron transfer (PET) from indoles to 4NQO is accompanied by proton transfer from the indole moieties irrespective of the substitution at the N-1 position. For 1,2-dimethylindole, however, proton abstraction is hindered possibly due to steric effects. In a protic medium, obviously proton transfer is possible from the medium and is the dominating reaction following PET. The effect of an external magnetic field is very small for all the systems studied. This is attributed to a competition between geminate proton abstraction by the 4NQO radical anion from the partner radical cation and escape of the 4NQO radical anion to the medium followed by proton transfer. The latter process is more predominant, and the former one, which produces a small population of geminate spin-correlated radical pairs, leads to a minor field effect. Another interesting observation is the affinity of 4NQO toward the tryptophan residues in a protein environment. It is seen that PET takes place preferably from the tryptophan residues rather than from the tyrosine residues.  相似文献   

2.
A new strategy for tuning the electron transfer between radicals and enolates has been developed. This method elicits the innate reactivity of AIBN with a copper catalyst and enables a cascade reaction with cinnamic acids. Electron paramagnetic resonance studies and control experiments indicate that the redox‐active copper species not only activates the radical by coordination, but also serves as a bridge to bring the radical and nucleophile within close proximity to facilitate electron transfer. By exploiting possible combinations of redox‐active metals and radical entities with suitable coordinating functional groups, this strategy should contribute to the development of a broad range of radical‐based reactions.  相似文献   

3.
Increasing enrichment of dimethyl sulfoxide, DMSO, in DMSO-water mixtures causes a reversal in the thermodynamic dissociation constants, pK as, and has a marked effect on the redox potentails of the thiolic and amino groups in cysteine and the protein disulfide isomerase (PDI) mimic BMC, Vectrase. This paper illustrates the effect of a hydrogen-bonding environment on the ionisation and redox properties of thiol groups in amino acids. A combination of potentiometry and Raman spectroscopy was applied to rationalise the observations. Intracellular environments are full of hydrophobic, hydrogen-bonding environments. The results illustrate the profound effects of the local environment on the thiol group.  相似文献   

4.
α-Amino acids are one type of the main building blocks of living systems, being the primary components of all naturally occurring peptides and proteins. They are the simplest optically active compound in the nature and have multiple functional groups, which enable them to be transformed into a wide variety of optically active substances. The resulting materials show a wide variety of functions such as electron transfer, information transfer, photo reactivity and selective catalytic function, which cannot be imitated by synthetic compounds. Functional macromolecular materials using biological chiral resources such as amino acids have been drawing much interest due to their biocompatibility and biodegradability easing the ecological trouble because amino acid residues can be targeted for cleaving by different enzymes. Also, this type of polymer contains nitrogen, which the organism needs for their growth and shows excellent hydrophilic character, reasonably high melting points and good materials properties even at relatively low molecular weights. However, polymers composed of amino acids alone have limited thermal stability and are insoluble in many common organic solvents, which make these materials difficult to fabricate and utilize. Preparation of hybrid systems between conventional synthetic polymers and linear sequences of amino acids are interesting because amino acid segments possess unique properties, such as directional polarity, chirality and their capability to undergo specific noncovalent interactions. These properties can potentially be used for designing novel hierarchical superstructures with tunable material properties for a wide variety of applications. Herein, the synthesis and properties of synthetic macromolecules having natural amino acids are reviewed in details up to now with excluding polypeptides.  相似文献   

5.
肌红蛋白(Myoglobin,Mb)中血红素辅基不仅具有储氧功能,也能吸收特定波长的光而影响蛋白功能表达。实验发现,部分游离的氨基酸对光诱导高铁肌红蛋白(metM b,Fe(III)-Mb)的还原过程及还原程度都有重要作用,因此,本文采用紫外-可见吸收光谱、圆二色谱、三维荧光光谱法,在光照体系中加入拥挤试剂来模拟细胞内拥挤环境,研究芳香氨基酸[色氨酸(Trp)、苯丙氨酸(Phe)、酪氨酸(Tyr)、半胱氨酸(Cys)]对metM b还原的影响。结果表明,含-OH或-SH的氨基酸(Tyr、Cys)能使metM b发生较好的光还原,无-OH或-SH基团的氨基酸(Trp、Phe)对metM b的光还原作用较弱,氨基酸促进metM b光还原的整个过程可能是分子间电子转移的过程。metM b在拥挤环境聚蔗糖70(Ficoll 70)中的光诱导还原程度比在稀溶液中高,拥挤试剂Ficoll70对蛋白的二级结构起保护作用,能够稳定血红素微环境。  相似文献   

6.
A 10-ns molecular dynamics study of the solvation of a hydrophobic transmembrane helical peptide in dimethyl sulfoxide (DMSO) is presented. The objective is to analyze how this aprotic polar solvent is able to solvate three groups of amino acid residues (i.e., polar, apolar, and charged) that are located in a stable helical region of a transmembrane peptide. The 25-residue peptide (sMTM7) used mimics the cytoplasmic proton hemichannel domain of the seventh transmembrane segment (TM7) from subunit a of H(+)-V-ATPase from Saccharomyces cerevisiae. The three-dimensional structure of peptide sMTM7 in DMSO has been previously solved by NMR spectroscopy. The radial and spatial distributions of the DMSO molecules surrounding the peptide as well as the number of hydrogen bonds between DMSO and the side chains of the amino acid residues involved are extracted from the molecular dynamics simulations. Analysis of the molecular dynamics trajectories shows that the amino acid side chains are fully embedded in DMSO. Polar and positively charged amino acid side chains have dipole-dipole interactions with the oxygen atom of DMSO and form hydrogen bonds. Apolar residues become solvated by DMSO through the formation of a hydrophobic pocket in which the methyl groups of DMSO are pointing toward the hydrophobic side chains of the residues involved. The dual solvation properties of DMSO cause it to be a good membrane-mimicking solvent for transmembrane peptides that do not unfold due to the presence of DMSO.  相似文献   

7.
卫应亮  邵晨  冯辉 《电化学》2007,13(2):207-211
将多壁碳纳米管填充在粉末微电极尖端的小孔里制成碳纳米管粉末微电极,研究氧单电子还原产生超氧自由基的电化学行为.在二甲亚砜(DMSO)介质中,该电极反应是一个近乎可逆的还原/氧化过程,峰电位差(ΔEp)120mV,并显示出良好的稳态伏安曲线.根据极化曲线算得该电极反应的异相电荷传递速率常数ks=9.8×10-3cm/s.此外,还研究了超氧自由基的氧化性和碱性,并对相关反应过程作了讨论.  相似文献   

8.
Obtaining sufficient amounts of pure glycoprotein variants to characterize their structures is an important goal in both functional biology and the biotechnology industry. We have developed preparative HIC conditions that resolve glycoform variants on the basis of overall carbohydrate content for a recombinant transferrin-exendin-4 fusion protein. The fusion protein was expressed from the yeast Saccharomyces cerevisiae from high density fermentation and is post-translationally modified with mannose sugars through O-glycosidic linkages. Overall hydrophobic behavior appeared to be dominated by the N-terminal 39 amino acids from the exendin-4 and linker peptide sequences as compared to the less hydrophobic behavior of human transferrin alone. In addition, using LC techniques that measure total glycans released from the pure protein combined with new high resolution technologies using mass spectrometry, we have determined the locations and chain lengths of mannose residues on specific peptides derived from tryptic maps of the transferrin-exendin-4 protein. Though the protein is large (80,488 kDa) and contains 78 possible serine and threonine residues as potential sites for sugar addition, mannosylation was observed on only two tryptic peptides located within the first 55 amino acids of the N-terminus. These glycopeptides were highly heterogeneous and contained between 1 and 10 mannose residues scattered among the various serine and threonine sites which were identified by electron transfer dissociation mass spectrometry. Glycan sequences from 1 to 6 linear mannose residues were detected, but mannose chain lengths of 3 or 4 were more common and formed 80% of the total oligosaccharides. This work introduces new technological capabilities for the purification and characterization of glycosylated variants of therapeutic recombinant proteins.  相似文献   

9.
The reactivity of a variety of quinuclidine-based catalysts in the Baylis-Hillman reaction has been examined, and a straightforward correlation between the basicity of the base and reactivity has been established, without exception. The following order of reactivity was established with pK(a)'s of the conjugate acids (measured in water) given in parentheses: quinuclidine (11.3), 3-hydroxyquinuclidine (9.9), DABCO (8.7), 3-acetoxyquinuclidine (9.3), 3-chloroquinuclidine (8.9), and quinuclidinone (7.2). The higher than expected reactivity of DABCO, based on its pK(a), was analyzed by comparing the relative basicity of DABCO and 3-acetoxyquinuclidine in DMSO. It was found that in aprotic solvent, DABCO was 0.6 pK(a) units more basic than 3-acetoxyquinuclidine, thus establishing a direct link between pK(a) of the amine and its reactivity. In contrast to previous literature work that reported the contrary, quinuclidine, which has the highest pK(a), was found to be the most active catalyst. The reaction profile with quinuclidine showed significant autocatalysis, which suggested that the presence of proton donors might further enhance rates. Thus, a series of additives bearing polar X-H bonds were investigated and it was found that methanol, triethanolamine, formamide, and water all provided additional acceleration. Methanol was found to be optimum, and the powerful combination of quinuclidine with methanol was tested with a host of aldehydes and Michael acceptors. Not only were the reactions more efficient and faster than previously reported, but now new substrates that were previously unreactive could be employed. Notable examples include the use of acetylenic aldehydes and the employment of vinyl sulfones, acrylamides, delta-lactones, and even alpha,beta-unsaturated esters bearing a beta-substituent.  相似文献   

10.
Carbon nanotubes (CNTs) are often employed in biofuel cells, artificial photosystems and bioelectronics in order to enhance electron transfer and to efficiently shuttle electrons between redox active molecules and the electrode surface. However, it should be noted that typical CNTs are highly heterogeneous materials, containing large amounts of impurities. Herein, we report the influence of nanographite impurities contained within CNTs upon the redox properties of signal transducers and enzyme cofactors that are vital for the functioning of biofuel cells, artificial leaves and bioelectronics as well as for the survival of living organisms. We investigate the susceptibility of tyrosine and tryptophan, amino acids involved in electron transfer and biorecognition reactions as well in the synthesis of neurotransmitters, in addition we also consider the susceptibility of the principal electron carrier β-nicotinamide adenine dinucleotide. We conclude that nanographite impurities within CNTs are responsible for the "electrocatalytic" oxidation of NADH and two amino acids involved in signal transduction, tyrosine and tryptophan. Our findings are of high importance for both industrial and biomedical applications.  相似文献   

11.
The redox behaviour of the anti-cancer drug mitoxantrone was investigated in aprotic media (dimethylsulfoxide-DMSO) by coupled electrochemical and spectral EPR and UV/VIS absorption techniques. The cyclic voltammetry study with stationary and rotating disc electrode (RDE) of the reductive pathway of mitoxantrone points to two-electron transfers and evidences as intermediate species the anion radical, the dianion and the corresponding protonated species. EPR and optical spectra registered during the electrochemical reduction allow the identification of these species and suggest the possibility of back oxidation of the drug by electron transfer to molecular oxygen. The possibility of reductive activation of molecular oxygen by the intermediate species in the redox processes of mitoxantrone is discussed in connection with the cardiotoxicity of the drug. Gas phase and solvent-dependent AM1 and PM3 semiempirical MO calculations allow a rationalization of the experimental results regarding the reactivity in redox processes.  相似文献   

12.
The development of electrospray has enabled the generation of gas-phase solvated multiply charged metal ions. Complexes involving both protic ligands (water, alcohols) and aprotic ones (e.g., ketones, DMSO, acetonitrile) were found for dications, but trications were compatible with aprotic ligands only. Here, to probe this difference in stability, acetonitrile complexes of metal trications were formed by ESI and collisionally fragmented. Proton transfer, electron transfer, and heterolytic cleavage channels previously found for dications were observed. Characteristic sizes for these processes suggest an intrinsic gap in the stability of dication and trication complexes against proton transfer, but not against electron transfer.  相似文献   

13.
The first principles design of manmade redox‐protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein‐based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine‐ligated photoactive metal–tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox‐active para‐quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids in protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron‐tunneling distances and rates.  相似文献   

14.
For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, l-alanine and l-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2.0 mol  dm−3 could be attributed to the increasing interaction with (DMSO)1(H2O)n clusters. The formation of (DMSO)m(H2O)n cluster via hydrophobic aggregating at higher DMSO concentration led to a decrease in hydrophobic effect of DMSO and its hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids. The structure change of solvent and the interaction between amino acid residues and DMSO was reflected by the solvation of proteins. It was found that dependence of hydrodynamic radius of bovine serum albumin and lysozyme on DMSO concentration was the same and similar to that of static light scattered by the mixed solvent, regardless of the difference in conformational change between the two proteins.  相似文献   

15.
Redox chemistry is the cornerstone of various electrochemical energy conversion and storage systems, associated with ion diffusion process. To actualize both high energy and power density in energy storage devices, both multiple electron transfer reaction and fast ion diffusion occurred in one electrode material are prerequisite. The existence forms of redox ions can lead to different electrochemical thermodynamic and kinetic properties. Here, we introduce novel colloid system, which includes multiple varying ion forms, multi‐interaction and abundant redox active sites. Unlike redox cations in solution and crystal materials, colloid system has specific reactivity‐structure relationship. In the colloidal ionic electrode, the occurrence of multiple‐electron redox reactions and fast ion diffusion leaded to ultrahigh specific capacitance and fast charge rate. The colloidal ionic supercapattery coupled with redox electrolyte provides a new potential technique for the comprehensive use of redox ions including cations and anions in electrode and electrolyte and a guiding design for the development of next‐generation high performance energy storage devices.  相似文献   

16.
Laccases catalyze the one-electron oxidation of a broad range of substrates coupled to the 4 electron reduction of O2 to H2O. Phenols are typical substrates, because their redox potentials (ranging from 0.5 to 1.0 V vs. NHE) are low enough to allow electron abstraction by the T1 Cu(II) that, although a relatively modest oxidant (in the 0.4-0.8 V range), is the electron-acceptor in laccases. The present study comparatively investigated the oxidation performances of Trametes villosa and Myceliophthora thermophila laccases, two enzymes markedly differing in redox potential (0.79 and 0.46 V). The oxidation efficiency and kinetic constants of laccase-catalyzed conversion of putative substrates were determined. Hammett plots related to the oxidation of substituted phenols by the two laccases, in combination with the kinetic isotope effect determination, confirmed a rate-determining electron transfer from the substrate to the enzyme. The efficiency of oxidation was found to increase with the decrease in redox potential of the substrates, and the Marcus reorganisation energy for electron transfer to the T1 copper site was determined. Steric hindrance to substrate docking was inferred because some of the phenols and anilines investigated, despite possessing a redox potential compatible with one-electron abstraction, were scarcely oxidised. A threshold value of steric hindrance of the substrate, allowed for fitting into the active site of T. villosa laccase, was extrapolated from structural information provided by X-ray analysis of T. versicolor lac3B, sharing an identity of 99% at the protein level, thus enabling us to assess the relative contribution of steric and redox properties of a substrate in determining its susceptibility to laccase oxidation. The inferred structural threshold is compatible with the distance between two phenylalanine residues that mark the entrance to the active site. Interaction of the substrate with other residues of the active site is commented on.  相似文献   

17.
Protein disulfide isomerase (PDI) can assist immature proteins to correctly fold by controlling cysteinyl disulfide (SS)‐relating reactions (i. e., SS‐formation, SS‐cleavage, and SS‐isomerization). PDI controls protein quality by suppressing protein aggregation, as well as functions as an oxidative folding catalyst. Following the amino acid sequence of the active center in PDI, basic amino acid conjugates of 1,2‐diselenan‐4‐amine ( 1 ), which show oxidoreductase‐ and isomerase‐like activities for SS‐relating reactions, were designed as a novel PDI model compound. By conjugating the amino acids, the diselenide reduction potential of compound 1 was significantly increased, causing improvement of the catalytic activities for all SS‐relating reactions. Furthermore, these compounds, especially histidine‐conjugated one, remarkably suppressed protein aggregation even at low concertation (0.3 mM~). Thus, it was demonstrated that the conjugation of basic amino acids into 1 simultaneously achieves the enhancement of the redox reactivity and the capability to suppress protein aggregation.  相似文献   

18.
Arabidopsis thaliana copper-zinc superoxide dismutase 1 (AtSOD1) is a typical metalloenzyme conferring cellular protection against the excessive accumulation of toxic reactive oxygen species, and is therefore considered as a critical protein. However, the structure and function of the vital amino acids around the active site of AtSOD1 remain poorly understood. Herein, the coordinated geometry of the catalytic center in AtSOD1 was reconstructed by electron paramagnetic resonance (EPR) technique, and it was found to be composed of copper and four histidine (H) residues using site-directed mutagenesis. Analysis of the mutants showed that H45 and H62 play essential roles in the catalytic reaction, and H119 plays an accessary role in facilitating substrate or proton transfer. The results indicated that the redox change of the Cu ion and the overall enzymatic activity of the protein were sustained by the H45-Cu-H62 core structure. In contrast, the residue H47 showed nearly no effect on the SOD catalytic activity. These data should contribute to a deeper understanding of the catalytic mechanism of the enzyme, and provide a new approach for the effective molecular modification of copper/zinc SODs to facilitate further research in this field.  相似文献   

19.
An electrode construct was fabricated in which a self-assembled monolayer containing a novel norbornylogous bridge was covalently attached to flavin adenine dinucleotide (FAD), the redox active centre of several oxidase enzymes. The electrochemistry of the construct was investigated before and after the reconstitution of glucose oxidase around the surface bound FAD. Rapid rates of electron transfer were observed both before and after the reconstitution of biocatalytically active enzyme. However, no biocatalytic activity was observed under anaerobic conditions suggesting the a lack of enzyme turnover through direct electron transfer. It is proposed that a decrease in the electronic coupling between the redox active FAD and the electrode following reconstitution of the glucose oxidase – a probable consequence of the FAD being immersed in a protein environment – was responsible for the inability of the enzyme to be turned over under anaerobic conditions.  相似文献   

20.
Eric M. Tippmann 《Tetrahedron》2007,63(27):6182-6184
Redox active amino acids, cofactors, and metal ions are involved in a large number of catalytic, electron transfer, and regulatory processes in biology. Consequently, the ability to engineer redox active centers at defined sites in proteins would facilitate both the study and manipulation of a wide range of biological processes. Recently, we demonstrated that the redox active amino acid 3,4-dihydroxyphenylalanine could be efficiently and selectively incorporated into proteins in Escherichia coli using a nonsense codon and a corresponding orthogonal tRNA/aminoacyl-tRNA synthetase pair. We now report that ferrocene derivative 1 can be genetically encoded in Saccharomyces cerevisiae (S. cerevisiae) in good yield in response to the amber codon, TAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号