首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了无穷远纵向剪切下无限大基体中含共焦刚性核弹性椭圆夹杂内任意位置螺型位错的干涉问题.运用复变函数保角映射、解析延拓等方法,获得了基体与夹杂区域的应力场的级数形式精确解,并得出了位错像力的解析表达式,导出了纵向剪切下两椭圆界面最大应力及其比值公式.在此基础上,分析和讨论了夹杂内部刚性核对位错与夹杂之间干涉的扰动效应,以及椭圆夹杂尺度对位错像力的影响规律.  相似文献   

2.
The elastic interaction of an edge dislocation, which is located either outside or inside a circular inhomogeneity, with an interfacial crack is dealt with. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of the complex potentials, the closed form solutions for the elastic fields in the matrix and inhomogeneity regions are derived explicitly. The image force on the dislocation is then determined by using the Peach–Keohler formula. The influence of the crack geometry and material mismatch on the dislocation force is evaluated and discussed when the dislocation is located in the matrix. It is shown that the interfacial crack has significant effect on the equilibrium position of the edge dislocation near a circular interface. The results also reveal a strong dependency of the dislocation force on the mismatch of the shear moduli and Poisson’s ratios between the matrix and inhomogeneity.  相似文献   

3.
Current research on nanocrystalline metals and nanoscale multilayer thin films suggests extraordinary plastic strength is due to confinement of slip to individual grains or layers. To assess the magnitude of confinement, a Peierls model of slip transmission of a screw dislocation across a coherent, non-slipping interface is presented. The results reflect that large interfacial barriers to transmission are generated by rapid fluctuations in dislocation line energy near the interface due to elastic modulus mismatch, stacking fault energy mismatch, and antiphase boundary energy for transmission into an ordered phase. Coherency stress is predicted to dramatically alter the dislocation core configuration and impart additional strength regardless of the sign. Contributions to strength are not additive due to nonlinear coupling via the dislocation core configuration. The predicted barrier strength for a coherent (0 0 1) Cu/Ni interface is comparable to atomistic (EAM) results but larger than estimates from hardness data.  相似文献   

4.
研究了压电双材料界面钝裂纹附近螺型位错的屏蔽效应与发射条件.应用保角变换技术,得到了复势函数与应力场的封闭形式解,讨论了位错方位、双材料电弹常数及裂纹钝化程度对位错屏蔽效应和发射条件的影响.结果表明,Burgers矢量为正的螺型位错可以降低界面钝裂纹尖端的应力强度因子(屏蔽效应),屏蔽效应随位错方位角及位错与裂纹尖端距离的增大而减弱,压电双材料中螺型位错对裂纹的屏蔽效应强于相应弹性双材料中螺型位错对裂纹的屏蔽效应;位错发射所需的临界无穷远加载或电位移随位错方位角及裂纹钝化程度的增加而增大;最可能的位错发射角度为零度即位错最可能沿裂纹前方发射.论文解答的特殊情况与已有文献一致.  相似文献   

5.
Experiments with transmission electron microscopy have shown that in a strong electron beam the contrast of dislocations may gradually disappear at an incoherent interface between a metal thin film and an amorphous substrate. There are reasons to believe that this phenomenon is caused by radiation-induced dislocation core spreading at the interface. A quantitative model accounting for this effect will be necessary for a better understanding of dislocation structures and plastic deformation in metal thin films. As a first step toward this objective, we develop a number of mathematical solutions for dislocation core spreading at an incoherent interface. For simplicity, we consider screw dislocations, and consider the interface to be characterized by a shear adhesive strength, τ0, below which no core spreading occurs, and above which spreading takes place in a viscous manner. We determine the final equilibrium core width and the rate of core spreading for single or planar arrays of dislocations in a homogeneous bulk material or at the interface between a thin film and a semi-infinite substrate where the film and substrate may have the same, or different, elastic constants. Some of our solutions are analytic and others are based on an implicit finite difference method with a Gauss-Chebyshev quadrature scheme. The phenomenon of dislocation core spreading is expected to have a dramatic effect on the strength of crystalline films deposited on amorphous substrates.  相似文献   

6.
刃型位错芯周围变形场的实验测量是多年来非常困难的研究任务,它导致目前有多种位错理论模型并存。为了检验刃型位错理论模型的适用性,使用透射电子显微镜直接观察并获得了多晶金中刃型位错的高分辨电子显微图像,并采用几何相位分析方法测量了刃型位错周围的位移场和应变场。将实验测量结果与线弹性理论位错模型、Peierls-Nabarro位错模型及Fore-man(a=4)位错模型进行了比较。结果表明,三种位错理论模型在远离位错芯的区域都能描述刃型位错变形场,但在距离位错芯较近的区域,Peierls-Nabarro模型是最适当的位错理论模型。  相似文献   

7.
研究了螺型位错偶极子与界面钝裂纹的干涉效应.应用保角变换技术,得到了复势函数与应力场的封闭解析解,讨论了位错偶极子方位、臂长及裂纹钝化程度对位错偶板子屏蔽效应和发射条件的影响.结果表明,与单个螺型位错不同,螺型位错偶极子与x轴夹角在一定范围内时才可以降低界面钝裂纹尖端的应力强度因子(屏蔽效应),屏蔽效应随偶板子臂长的增大而增强,随裂纹钝化程度的增大而增强,屏蔽区域也随裂纹钝化程度的增大而增大;位错偶极子发射所需的临界无穷远加载随偶极子臂长的增加而减小,随位错方位角及裂纹钝化程度的增加而增大;最可能的位错偶极子发射角度为0.螺型位错偶极子的发射比单个螺型位错的发射要困难.本文解答的特殊情况与相关文献给出的解答一致.  相似文献   

8.
The interaction between a screw dislocation and a semi-infinite interfacial crack in a transversely isotropic magneto-electro-elastic bi-material is investigated. The dislocation line is perpendicular to the isotropic basal plane of the bi-material. The elastic and electromagnetic fields induced by the dislocation are obtained through the use of the complex variable method together with the superposition scheme. The stress, electric displacement and magnetic intensity factors as well as the image exerted on the dislocation are given explicitly. We find that the intensity factors are expressed in terms of the so-called effective materials and the radial component of the image force is only dependent on the elastic modulus of the material with the dislocation. As an illustrative example, the bi-material that consists of piezoelectric and piezomagnetic phases is analyzed.  相似文献   

9.
The interaction of a screw dislocation with an interfacial edge crack in a two-phase piezoelectric medium is investigated. Closed-form solutions of the elastic and electrical fields induced by the screw dislocation are derived using the conformal mapping method in conjunction with the image principle. Based on the electroelastic fields derived, the stress and electric displacement intensity factors, the image force acting on the dislocation are given explicitly. We find that the stress and electric displacement intensity factors depend on the effective electroelastic material constants. In the case where one of two phases is purely elastic, the stress intensity factor and image force are plotted to illustrate the influences of electromechanical coupling effect, the position of the dislocation and the material properties on the interaction mechanism. The project supported by the Doctoral Foundation of Hebei Province (B2003113)  相似文献   

10.
The elastic strain and stress fields associated with nanoscale compositional modulation in an anisotropic epitaxial film on an anisotropic substrate are obtained by using Stroh formalism and the Eshelby-type inclusion method. The composition of the epitaxial film is considered to periodically fluctuate in a surface soft mode, with the amplitude of the composition modulation maximal near the growing surface and decreasing exponentially into the film. It has been experimentally observed that the composition modulation affects the formation of a new type of crystal defects, i.e., misfit dislocation dipoles, in III–V compound semiconductor materials. The formation energy of a misfit dislocation dipole under the elastic fields due to the composition modulation is calculated in this study. It is composed of the core and self energies of two dislocations, the interaction energy between two dislocations, and the interaction energies between the composition modulation and two dislocations. Numerical calculations are performed for a dislocation dipole in a lattice-matched Ga0.5In0.5P film on a GaAs substrate.  相似文献   

11.
The interaction between piezoelectric screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under combined mechanical and electric load at infinity is dealt with. The closed-form solutions are derived for complex potentials and generalized stress fields. In the limiting cases, some well-known results can be obtained from the present solutions. Moreover, some new exact solutions are shown. The stress intensity factor and the energy release rate at the right tip due to a screw dislocation near the right interfacial crack are also calculated. The results show that the shielding effect of dislocation on crack expanding decreases with the increase in dislocation azimuth angle and the distance between the dislocation and the crack tip, and the repulsion acting on the dislocation from the other half plane demotes crack propagation. The increasing of the length of the other crack promotes crack growth, but the increasing of the minor semi-axis demotes it.  相似文献   

12.
The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomogeneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezoelectric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.  相似文献   

13.
The phenomenon of interfacial fracture, as manifested by atomistic cleavage, debonding and dislocation emission provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation[1] of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Embedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration under a remoteK field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation. The project supported by the National Natural Science Foundation of China  相似文献   

14.
仲政 《力学季刊》1998,19(4):319-325
本文研究了具有线弹簧弱界面的异质球形夹杂的本征应变问题,所采用的线弹簧界面模型既能界面的切线方向滑动,又能考虑界面的法线方向张开,根据叠加原理、原问题的弹性场可分成三部分;二部分由真实均匀本征应变所引起,另一部分由等效的非均匀本征应变所引起,后一部分则由虚拟的Somigliana位错场所产生。本文求得了等效非均匀本征应变和虚拟位错场的Burger矢量的解析表达式,进而确定的问题的弹性场。  相似文献   

15.
The problem of the elastic interaction between a screw dislocation and a three-phase circular inclusion with interracial rigid lines (anti-cracks) is investigated. An efficient and concise method for the complex multiply connected region is developed, with which explicit series form solutions of the complex potentials in the matrix, and the interphase layer and inclusion regions are derived. Based on the complex potentials, the image force on the screw dislocation is then calculated by using the Peach-Koehler formula. The equilibrium position of the dislocation is discussed in detail for various rigid line geometries, interphase layer thicknesses and material property combinations. The main results show that the interracial rigid lines exert a significant perturbation effect on the motion of the screw dislocation near the circular inclusion surrounded by an interphase layer.  相似文献   

16.
The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex variable method for the complex multiply connected region is developed, and the general solutions to the problem are derived. As illustrative examples, solutions in explicit series form for complex potentials are presented in the case of one or two interfacial cracks. Image forces on the dislocation are calculated by using the Peach-Koehler formula. The influence of crack geometries and material properties on the image forces is evaluated and discussed. It is shown that the interfacial crack has a significant effect on the equilibrium position of the dislocation near an elliptical-arc interface. The main results indicate, when the length of the crack goes up to a critical value, the presence of the interfacial crack can change the interaction mechanism between a screw dislocation and an elliptical inclusion. The present solutions can include a number of previously known results as special cases.The project supported by the National Natural Science Foundation of China(10272009 and 10472030) and the Natural Science Foundation of Hunan Province(02JJY2014)  相似文献   

17.
Elastic fields of circular dislocation and disclination loops are represented in explicit form in terms of spherical harmonics, i.e. via series with Legendre and associated Legendre polynomials. Representations are obtained by expanding Lipschitz-Hankel integrals with two Bessel functions into Legendre series. Found representations are then applied to the solutions of elasticity boundary-value problems of the theory of defects and to the calculation of elastic fields of segmented spherical inclusions. In the framework of virtual circular dislocation–disclination loops technique, a general scheme to solving axisymmetric elasticity problems with boundary conditions specified on a sphere is given. New solutions for elastic fields of a twist disclination loop in a spherical particle and near a spherical pore are demonstrated. The easy and straightforward way for calculations of elastic fields of segmented spherical inclusion with uniaxial eigenstrain is shown.  相似文献   

18.
Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper. The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve. An atoms/continuum averlapping belt is devised to facilitate the transition between the two scales. The continuum constraint on the atomic assembly is imposed through the mechanics atmosphere along the overlapping belt. Transmissions of mechanics parameters such as displacements, stresses, masses and momenta across the belt are realized. The present model allows us to explore interfacial fracture processes under different mode mixity. The effect of atomistic zigzag interface on the fracture process is revealed: it hinders dislocation emission from the crack tip, especially under high mode mixity. The project supported by the National Natural Science Foundation of China  相似文献   

19.
Recent advances in high-resolution electron backscatter diffraction (EBSD)-based microscopy are applied to the characterization of elastic fields and incompatibility structures near the grain boundaries (GBs) in polycrystals. Two main recoveries are reported here: surface geometrically necessary dislocation (density) tensors, as described by Kröner, and the elastic fields near cracks (unconsolidated portions of interface) in loaded samples. Context for the application of these recoveries is described, using Green’s function solutions for combined heterogeneity and dislocation. Featured recoveries required the cross-correlation based determination of the elastic distortion tensor, aided by application of the simulated pattern method, and determination of the absolute pattern center utilizing the expected pattern properties in a spherical Kikuchi reference frame. High-resolution data obtained along an ultrasonically consolidated nickel boundary of varying amalgamation indicates that the imposed traction free boundary condition at free surfaces is well observed in the data structure. Further, high-resolution data acquired near a single grain boundary in well-annealed, low content steel suggests that it may be possible to measure the intrinsic elastic properties of GBs.  相似文献   

20.
The elastic displacements, stresses and interaction energy of arbitrarily shaped dislocation loops with general Burgers vectors in transversely isotropic bimaterials (i.e. joined half-spaces) are expressed in terms of simple line integrals for the first time. These expressions are very similar to their isotropic full-space counterparts in the literature and can be easily incorporated into three-dimensional (3D) dislocation dynamics (DD) simulations for hexagonal crystals with interfaces/surfaces. All possible degenerate cases, e.g. isotropic bimaterials and isotropic half-space, are considered in detail. The singularities intrinsic to the classical continuum theory of dislocations are removed by spreading the Burgers vector anisotropically around every point on the dislocation line according to three particular spreading functions. This non-singular treatment guarantees the equivalence among different versions of the energy formulae and their consistency with the stress formula presented in this paper. Several numerical examples are provided as verification of the derived dislocation solutions, which further show significant influence of material anisotropy and bimaterial interface on the elastic fields and interaction energy of dislocation loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号