首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber orientation and dispersion in the dilute fiber suspension that flows through a T-shaped branching channel are simulated numerically based on the slender-body theory. The simulated results are consistent qualitatively with the experimental data available in the literature. The results show that the spatial distribution of fibers is dependent on the fiber aspect ratio, but has no relation with the volume fraction of fiber. The content ratio of fibers near the upper wall increases monotonically with an increasing Re number, and the situation is reverse for the region near the bottom wall. The orientation of fibers depends on Re number, however, the function of fiber volume fraction and aspect ratio is negligible. The fibers near the wall and in the central region of the channel align along the flow direction at all times, but the fibers in the other parts of the channel tend to align along the flow direction only in the downstream region.The project supported by the National Natural Science Foundation of China (10372090) and Doctoral Program of Higher Education in China (20030335001)The English text was polished by Ron Marshall  相似文献   

2.
This paper investigates the layered structure of a turbulent plane wall jet at a distance from the nozzle exit. Based on the force balances in the mean momentum equation, the turbulent plane wall jet is divided into three regions: a boundary layer-like region (BLR) adjacent to the wall, a half free jet-like region (HJR) away from the wall, and a plug flow-like region (PFR) in between. In the PFR, the mean streamwise velocity is essentially the maximum velocity, and the simplified mean continuity and mean momentum equations result in a linear variation of the mean wall-normal velocity and Reynolds shear stress. In the HJR, as in a turbulent free jet, a proper scale for the mean wall-normal flow is the mean wall-normal velocity far from the wall and a proper scale for the Reynolds shear stress is the product of the maximum mean streamwise velocity and the velocity scale for the mean wall-normal flow. The BLR region can be divided into four sub-layers, similar to those in a canonical pressure-driven turbulent channel flow or shear-driven turbulent boundary layer flow. Building on the log-law for the mean streamwise velocity in the BLR, a new skin friction law is proposed for a turbulent wall jet. The new prediction agrees well with the correlation of Bradshaw and Gee (1960) over moderate Reynolds numbers, but gives larger skin frictions at higher Reynolds numbers.  相似文献   

3.
Velocity profile of fiber suspension flow in a rectangular channel is measured by pulsed ultrasonic Doppler velocimetry (PUDV), and the effect of fiber concentration and Reynolds number on the shape of the velocity profile is investigated. Five types of flow behavior are observed when fiber concentration increases or flow rate decreases progressively. The turbulent velocity profiles of fiber suspension can be described by a correlation with fiber concentration, nl3, and Reynolds number, Re as the main parameters. The presence of fiber in the suspension will reduce the turbulence intensity and thus reduce the turbulent momentum transfer. On the other hand, fibers in the suspension have the tendency to form fiber networks, which will increase the momentum transfer. The relative contribution of these two types of momentum flux will determine the final shape of the velocity profile.  相似文献   

4.
In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k–e{\varepsilon} model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in rectangular cross-section jets is considered. The aspect ratios that were considered for this work were 1:1 to 1:4. The results showed that the jet entrains more with smaller AR. Special attention has been drawn to the influence of the Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the rectangular jet. An influence on the jet evolution is found for smaller Re, but the jet is close to a converged state for higher Reynolds numbers. The inflow conditions have considerable influence on the jet characteristics.  相似文献   

5.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

6.
小宽厚比喷嘴喷射出的平面水膜进入静止空气中,在不同气流流速环境下对水膜碎裂过程进行了实验研究。结果表明,静止空气中的水膜表面波呈现对称波形,射流的碎裂长度随雷诺数的增大而增大,喷射压力对射流碎裂长度没有直接影响。空气助力作用使平面射流表面波的上、下气液交界面出现相位差。水膜的碎裂长度随空气助力气流速度的增大而减小;空气助力对于低雷诺数水膜射流具有很强的促进碎裂作用,所以会极大地改善低雷诺数射流的一次雾化效果。随着水流雷诺数的提高,空气助力作用对水膜碎裂长度的影响大为减弱;即使在高速助力空气的作用下,水膜仍长期保持较稳定的射流流态,没有出现明显的水膜撕裂现象。说明在小宽厚比喷嘴的瑞利(Rayleigh)模式射流中,高雷诺数射流是水膜的稳定因素。与气液流速比、气流马赫数等无量纲参数相比,液体喷射的雷诺数是射流碎裂的主要影响因素。  相似文献   

7.
The present study experimentally investigates a turbulent jet in crossflow relevant to film cooling applications. The jet is inclined at 30°, and its mean velocity is the same as the crossflow. Magnetic resonance imaging is used to obtain the full three-dimensional velocity and concentration fields, whereas Reynolds stresses are obtained along selected planes by Particle Image Velocimetry. The critical role of the counter-rotating vortex pair in the mixing process is apparent from both velocity and concentration fields. The jet entrainment is not significantly higher than in an axisymmetric jet without crossflow, because the proximity of the wall inhibits the turbulent transport. Reynolds shear stresses correlate with velocity and concentration gradients, consistent with the fundamental assumptions of simple turbulence models. However the eddy viscosity is strongly anisotropic and non-homogeneous, being especially low along the leeward side of the jet close to injection. Turbulent diffusion acts to decouple mean velocity and concentration fields, as demonstrated by the drop in concentration flux within the streamtube issued from the hole. Volume-averaged turbulent diffusivity is calculated using a mass–flux balance across the streamtube emanating from the jet hole, and it is found to vary slowly in the streamwise direction. The data are compared with Reynolds-Averaged Navier–Stokes simulations with standard k  ε closure and an optimal turbulent Schmidt number. The computations underestimate the strength of the counter-rotating vortex pair, due to an overestimated eddy viscosity. On the other hand the entrainment is increasingly underpredicted downstream of injection. To capture the correct macroscopic trends, eddy viscosity and eddy diffusivity should vary spatially in different ways. Therefore a constant turbulent Schmidt number formulation is inadequate for this flow.  相似文献   

8.
The behavior of a non-buoyant circular water jet discharged from a contraction nozzle was experimentally investigated. In this experiment, the Reynolds number of the jet, based on the mean velocity results obtained by particle image velocimetry (PIV), ranged from 177 to 5,142. From the experimental results, we found that the cross-sectional profile of the axial velocity for a laminar flow near the nozzle did not show a top-hat distribution, whereas the profiles with Reynolds number higher than 437 were almost top-hat. The length of the zone of flow establishment (ZFE) was found to decrease with increasing Reynolds number. The measured centerline velocity decayed more rapidly and, consequently, approached the theoretical equation earlier near the nozzle as the Reynolds number increased. The decay constant for the centerline velocity of the turbulent cases was relatively lower than that discovered in theory. It is assumed that this probably resulted from the use of the contraction nozzle. Verifying the similarity of the lateral velocity profiles demonstrated that the Gaussian curve was properly approximated only for the turbulent jets and not for the laminar or transitional flows. The jet half width seldom grew for the laminar or transitional flows, whereas it grew with increasing axial distance for the turbulent flows. The spreading rates for the turbulent flows gradually decreased with increasing Reynolds number. The normalized turbulence intensity along the jet centerline increased more rapidly with the axial distance as the Reynolds number increased, and tended to the constant values proposed by previous investigators. The Reynolds shear stress levels were also found to increase as the Reynolds number increased for the turbulent jets.  相似文献   

9.
Turbulent structure during transition to self-similarity in a round jet   总被引:1,自引:0,他引:1  
 The developing turbulent region of a round jet was investigated using an improved implementation of digital particle image velocimetry (DPIV). The two-dimensional flow field in planes normal and parallel to the axial velocity was measured at locations between 15 and 30 diameters downstream, for two Reynolds numbers of 5500 and 16,000. The study consisted of instantaneous snapshots of the velocity and vorticity fields as well as measurements of velocity correlations up to third order. In this regime, the Reynolds number had a significant effect on both the instantaneous flow structure and the profiles of mean velocity across the jet. Coherent streamwise structures were present in the jet core for the lower Reynolds number. Additional structures whose evolution was governed by time scales two orders of magnitude larger than the convective scale inside the jet were observed in the entrainment field. The velocity correlations provided further support for the validity of DPIV turbulence measurements. The data was consistent with the equations of motion and momentum was conserved. DPIV measurements of turbulent kinetic energy components agreed with the hot-wire measurements of previous studies. Received: 27 November 1996/Accepted: 14 July 1997  相似文献   

10.
IntroductionThetwo_phaseflowwithcylinderparticlesisadifficultmatterintheoreticalresearchofmultiphaseflowandnon_Newtonianflow ,soitisacademicallyvaluabletostudyit.Meanwhile ,suchflowshaveabroadbackgroundinindustry .Inthematerialscience,themoldingandproces…  相似文献   

11.
The results of measurements of all three components of the mean velocity vector, the Reynolds normal and primary shear stresses and the mean static pressure in a turbulent free jet, issuing from a sharp-edged cruciform orifice, are presented in this paper. The measurements were made with an x-array hot-wire probe and a pitot-static tube in the near flow field of the jet. The Reynolds number, based upon the equivalent diameter of the orifice, was 1.70 × 105. In addition to the quantities measured directly, the mean streamwise centreline velocity decay, the jet half-velocity widths, the jet spreading rate, the mean streamwise vorticity, the mass entrainment rate, the integral momentum flux and the one-dimensional energy spectra have been derived from the measured data. The results show that the mean streamwise centreline velocity decay rate of the cruciform jet is higher than that of a round jet issuing from an orifice with the same exit area as that of the cruciform orifice. The mean streamwise velocity field changed shape continuously from a cruciform close to the orifice exit plane to circular at 12 and half equivalent diameters downstream. The mean streamwise vorticity field, up to about three equivalent diameters downstream of the orifice exit plane, consists of four pairs of counter-rotating cells, which are aligned with the four edges in the centre of the cruciform orifice.  相似文献   

12.
An experimental study has been undertaken to investigate the effect of Reynolds number on the near-field region of circular turbulent air jets. Measurements were made using a two-component Laser Doppler Anemometer, and included mean velocity, turbulence intensity, skewness factor, flatness factors and power spectrum. Measurements were taken up to 10 nozzle exit diameter in the downstream direction for different exit Reynolds numbers in the range of 1400 to 20000. The Reynolds number was found to have a strong effect on the jet flow behavior in the near-field region; the centerline velocity decays faster (decay constant = 6.11 for Re = 19400, = 1.35 for Re 1430) and the potential core gets shorter with decreasing Reynolds number. Profile measurements of the skewness and flatness factors indicate that the jet flow becomes more intermittent with decreasing Reynolds number. Power spectrum measurements of the streamwise fluctuating velocities reflects the high energy content of the high Reynolds number jet. It also reveals that there is greater energy at the higher frequencies with increasing Reynolds number.  相似文献   

13.
防风网透流风空气动力学特性大涡数值模拟研究   总被引:2,自引:2,他引:0  
基于有限体积法建立不可压缩粘性流体运动的大涡模拟模型,采用Smagorinsky-Lilly亚格子模型,并引入浸入边界法(IBM)实现无滑移固壁边界条件,对雷诺数30~30000之间防风网透流风进行模拟研究。基于模拟结果,提出蝶型防风网透流风存在4个典型分区结构,流场中存在由蝶型形态引起的大尺度分层剪切流动,加强流体动能耗散。透流风在雷诺数300时发生层流至湍流的转捩,而在雷诺数增长至3000以上时,湍流充分发展,纵向流速脉动强度可达70%。防风网整体空气阻力远大于单个孔口射流阻力的线性叠加,射流间的相互作用以及大尺度的分层剪切结构大大增加流体阻力损失,这为通过优化孔口布置和网板形态来节省材料提供了科学依据。  相似文献   

14.
A model relating the translational and rotational transport of orientation distribution function (ODF) of fibers to the gradient of mean ODF and the dispersion coefficients is proposed to derive the mean equation for the ODE Then the ODF of fibers is predicted by numerically solving the mean equation for the ODF together with the equations of turbulent boundary layer flow. Finally the shear stress and first normal stress difference of fiber suspensions are obtained. The results, some of which agree with the available relevant experimental data, show that the most fibers tend to orient to the flow direction. The fiber aspect ratio and Reynolds number have significant and negligible effects on the orientation dis- tribution of fibers, respectively. The additional normal stress due to the presence of fibers is anisotropic. The shear stress of fiber suspension is larger than that of Newtonian solvent, and the first normal stress difference is much less than the shear stress. Both the additional shear stress and the first normal stress difference increase with increasing the fiber concentration and decreasing fiber aspect ratio.  相似文献   

15.
An axisymmetric air jet exhausting from a 22-degree-angle diffuser is investigated experimentally by particle image velocimetry (PIV) and stereo-PIV measurements. Two opposite dielectric barrier discharge (DBD) actuators are placed along the lips of the diffuser in order to force the mixing by a co-flow actuation. The electrohydrodynamic forces generated by both actuators modify and excite the turbulent shear layer at the diffuser jet exit. Primary air jet velocities from 10 to 40 m/s are studied (Reynolds numbers ranging from 3.2 to 12.8 × 104), and baseline and forced flows are compared by analysing streamwise and cross-stream PIV fields. The mixing enhancement in the near field region is characterized by the potential core length, the centreline turbulent kinetic energy (TKE), the integrated value of the TKE over various slices along the jet, the turbulent Reynolds stresses and the vorticity fields. The time-averaged fields demonstrate that an effective increase in mixing is achieved by a forced flow reattachment along the wall of the diffuser at 10 m/s, whereas mixing enhancement is realized by excitation of the coherent structures for a primary velocity of 20 and 30 m/s. The actuation introduces two pairs of contra-rotating vortices above each actuator. These structures entrain the higher speed core fluid toward the ambient air. Unsteady actuations over Strouhal numbers ranging from 0.08 to 1 are also studied. The results suggest that the excitation at a Strouhal number around 0.3 is more effective to enhance the turbulence kinetic energy in the near-field region for primary jet velocity up to 30 m/s.  相似文献   

16.
A two-component laser Doppler velocimeter with high spatial and temporal resolution was used to obtain measurements for fully developed turbulent flow of water through a channel with an aspect ratio of 12 : 1 at Re=5700 (based on the centerline velocity and the half-height of the channel). Statistical quantities that were determined are the mean streamwise velocity, the root-mean-square of the fluctuations of the streamwise and the normal velocities, the Reynolds shear stress and higher order moments. Turbulence production is calculated from these quantities. Turbulence statistics obtained from experiments are compared with results from a direct numerical simulation at the same Reynolds number. The good agreement validates a recent DNS, at Re=5700, which is approximately twice as large as used in most previous studies. Received: 12 May 1997 / Accepted: 8 April 1998  相似文献   

17.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

18.
 The flow field generated by unventilated two parallel jets has been investigated using LDA. The two nozzles each with an aspect ratio of 24 were separated by 4.25 nozzle widths. Results show that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. It was shown that the two-dimensionality of the flow was greatly enhanced by the installation of side plates and that the flow was independent of Reynolds number between 8300 and 19300. Acoustic excitation introduced at the outer shear layer mode has been shown to reduce the size of the potential core, recirculation zone, merging length and combined length but enhance jet spreading, streamwise velocity decay and volume entrainment. Received: 18 November 1994/Accepted: 26 July 1996  相似文献   

19.
The effect of sidewalls on rectangular jets   总被引:1,自引:0,他引:1  
An experimental study is presented regarding the influence of sidewalls on the turbulent free jet flow issuing from a smoothly contracting rectangular nozzle of aspect ratio 15. “Sidewalls” are two parallel plates, flush with each of the slots’ short sides, practically establishing bounding walls extending the nozzle sidewalls in the downstream direction. Measurements of the streamwise and lateral velocity mean and turbulent characteristics have been accomplished, with an x-sensor hot wire anemometer, up to an axial distance of 35 nozzle widths, for jets with identical inlet conditions with and without sidewalls. Centreline measurements for both configurations have been collected for three Reynolds numbers, ReD = 10,000, 20,000 and 30,000. For ReD = 20,000 measurements in the transverse direction were collected at 13 different downstream locations in the range, x = 0–35 nozzle widths, and in the spanwise direction at three different downstream locations, x = 2, 6 and 25 nozzle widths.Results indicate that, the two jet configurations (with and without sidewalls) produce statistically different flow fields. Sidewalls do not lead to the production of a 2D flow field as undulations in the spanwise mean velocity distribution indicate. They do increase the two-dimensionality of the jet increasing the longevity of 2D spanwise rollers structures formed in the initial stages of entrainment, which are responsible for the convection of longitudinal momentum towards the outer field, establishing larger streamwise mean velocities at the jet edges. In the near field, up to 25 nozzle widths, lower outward lateral velocities in the presence of the sidewalls are held responsible for the decrease of turbulent terms including rms of velocity fluctuations and Reynolds stresses. Skewness factors increase monotonically across the shear layers from negative values to positive forming sharp peaks at the outer edges of the jet, illustrative of the presence of well defined 2D roller structures in the jet with sidewalls.  相似文献   

20.
The effect of the jet-to-cross-flow velocity ratio, R, on the turbulent wake and Kármán vortex shedding for a cylindrical stack of aspect ratio AR=9 was investigated in a low-speed wind tunnel using thermal anemometry. The cross-flow Reynolds number was ReD=2.3×104, the jet Reynolds number ranged from Red=7.6×103 to 4.7×104, and R was varied from 0 to 3. The stack was partially immersed in a flat-plate turbulent boundary layer, with a boundary layer thickness-to-stack-height ratio of δ/H=0.5 at the location of the stack. From the behaviour of the turbulent wake and the vortex shedding, the flow around the stack could be classified into three regimes depending on the value of R, which were the downwash (R<0.7), cross-wind-dominated (0.7R<1.5), and jet-dominated (R1.5) flow regimes. Each flow regime had a distinct structure to the mean velocity (streamwise and wall-normal directions), turbulence intensity (streamwise and wall-normal directions), and Reynolds shear stress fields, as well as the variation of the Strouhal number and the power spectrum along the stack height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号