首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

2.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

3.
The Schiff base compound, N-N′-bis(4-methoxybenzylidene)ethylenediamine (C18H20N2O2) has been synthesized and its crystal structure has been investigated by X-ray analysis and PM3 method. The compound crystallizes in monoclinic space group P21/n with a=10.190(1), b=7.954(1), c=10.636(1) Å, β=111.68(1)°, V=801.1(1) Å3, Z=2 and Dcal=1.229 Mgm−3. The title structure was solved by direct methods and refined to R=0.056 for 2414 reflections [I>3.0σ(I)] by full-matrix anisotropic least-squares methods. The energy profile of the compound was calculated by PM3 method as a function of θ[N1′–C9′–C9–N1]. The most stable molecular structure of the title compound is the anti conformation, which is different in energy by 5.0 and 1.0 kcal mol−1 from the eclipsed conformation I and gauche conformations, (III and V), respectively.  相似文献   

4.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

5.
The reactions of 2-trans-6-N4P4(NHPrn)2Cl6 (2), which was obtained from N4P4Cl8 (1) and n-propylamine, with pyrrolidine and t-butylamine in different solvents have been studied. Compound (2) gave two different products, namely monocyclic (3 and 5) and bicyclic (4 and 6) phosphazenes. Compounds (2–6) have been characterized by elemental analysis, IR, 1H-, 13C-, 31P NMR, HETCOR and MS and the structure of compound (5) has been examined crystallographically. The bicyclic phosphazene (6) is the first exciting example of bicyclic phosphazenes containing chlorine atoms, in the literature. The formation mechanisms of bicyclic phosphazenes are re-considered by taking into account the synthesis of compound (6), which contains three stereogenic phosphorus atoms. Compound (5) crystallizes in the monocyclic space group P21/n with a=13.974(2), b=17.836(5), and c=18.683(4) Å, β=98.50(1)°, V=4605.4(2) Å3, Z=4 and Dx=1.051 g cm−3. It consists of a non-centrosymmetric, non-planar phosphazene ring in a saddle conformation, with two n-propylamino (in 2-trans-6 positions) and six bulky t-butylamino side groups. The bulky substituents are instrumental in determining the molecular geometry.  相似文献   

6.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

7.
The crystal structure of N-(2-hydroxy-5-chlorophenyl) salicylaldimine (C13H10NO2Cl) was determined by X-ray analysis. It crystallizes orthorhombic space group P212121 with a=12.967(2) Å, b=14.438(3) Å, c=6.231(3) Å, V=1166.5(6) Å3, Z=4, Dc=1.41 g cm−3 and μ(MoK)=0.315 mm−1. The title compound is thermochromic and the molecule is nearly planar. Both tautomeric forms (keto and enol forms in 68(3) and 32(3)%, respectively) are present in the solid state. The molecules contain strong intramolecular hydrogen bonds, N1–H1O1/O2 (2.515(1) and 2.581(2) Å) for the keto form and O1–H01N1 for the enol one. There is also strong intermolecular O2–HO1 hydrogen bonding (2.599(2) Å) between neighbouring molecules. Minimum energy conformations AM1 were calculated as a function of the three torsion angles, θ1(N1–C7–C6–C5), θ2(C8–N1–C7–C6) and θ3(C9–C8–N1–C7), varied every 10°. Although the molecule is nearly planar, the AM1 optimized geometry of the title compound is not planar. The non-planar conformation of the title compound corresponding to the optimized X-ray structure is the most stable conformation in all calculations.  相似文献   

8.
N-(2-hydroxyphenyl)-4-amino-3-penten-2-on (C11H13NO2) has been studied by X-ray analysis. It crystallizes the orthorhombic space group P212121 with a=8.834(1), b=10.508(2), c=11.212(2) Å, V=1040.8(3) Å3, Z=4, Dc=1.22 g cm−3 and μ(MoK)=0.084 mm−1. The structure was solved by direct methods and refined to R=0.038 for 1373 reflections (I>2σ(I)). The title compound is photochromic and the molecule is not planar. Intramolecular hydrogen bonds occur between the pairs of atoms N(1) and O(1) [2.631(2) Å], and N(1) and O(2) [2.641(2) Å], the H atom essentially being bonded to the N atom. There is also a strong intermolecular O–HO hydrogen bonding [2.647(2) Å] between neighbouring molecules. Tautomeric properties and conformations of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations and the results are compared with the X-ray results.  相似文献   

9.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

10.
(N,N-Dimethyldithiocarbamato)(n-butyl)diphenyltin(IV), n-BuPh2SnS2NMe2, crystallizes in the monoclinic space group P21/n with a 9.772(5), b 9.895(4), c 21.418(9) Å, β 95.81(3)0, V 2060 Å3 Z = 4, μ 14.4 cm−1 The structure was determined by the heavy-atom technique from 3103 independent reflections measured at room temperature on an Enraf-Nonius four-circle CAD-4 diffractometer using monochromatized Mo-K radiation and refined to a final R value of 5.8%. The tin atom is essentially four-coordinated with a weak fifth tin-sulphur bond (Sn---S(2) 3.079(1) Å) considerably longer than the other (Sn---S(1) 2.466(1) Å). A comparison with the complex n-BuPhSn(C1)S2CNEt2 (Sn---S(1) 2.454(1) Å; Sn---S(2) 2.764(1) Å) suggests that enhanced steric factors are responsible for the preferential monodentate behaviour of the dithiocarbamate ligand in the title complex.  相似文献   

11.
The crystal structure of NdCl3·C6H12O6·9H2O has been determined. It crystallizes in the monoclinic system, p2(1)/n space group with cell dimensions: a=15.824(3) Å, b=8.633(2) Å, c=16.219(3) Å, β=107.24°, V=2116.1(7) Å3 and Z=4. Each Nd ion is coordinated to nine oxygen atoms, two from inositol and seven from water molecules, with an Nd–O distance of 2.449–2.683 Å, the other two water molecules are hydrogen bonded. No direct contacts exist between Nd and Cl. There is an extensive network of hydrogen bonds in hydroxyl groups, water molecules and chloride ions in the crystal structure of the lanthanide complex. The Raman spectra of Pr–, Nd– and Sm–inositol are similar, which show that the three metal ions have the same coordination mode. The Raman spectra are consistent with their structures.  相似文献   

12.
The effects of hydrogen bonding, inter- and intramolecular electrostatic interactions on the structure of homarinium chloride, HOMH·Cl, in the crystal and its isolated molecule have been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by the MP2 and DFT theoretical methods. In the crystal, the Cl anion is connected with protonated homarine via the O–HCl hydrogen bond of the length of 2.937(4) Å, and two N+Cl intermolecular electrostatic interactions. In the isolated molecule, according to the MP2 and B3LYP calculations, the Cl anion is engaged in a shorter hydrogen bond (O–HCl of 2.811–2.861 Å) and in one type of intramolecular electrostatic interactions. The calculated bond lengths and bond angles at the MP2 and B3LYP levels of theory are in good agreement with the X-ray data, except the conformation of the COOH group, which is cis (syn) in the crystal and trans (anti) in the isolated molecule. The tentative assignments for the experimental solid state vibrational spectra of HOMH·Cl and HOMD·Cl have been made on the basis of the B3LYP/6-31G(d,p) calculated frequencies and intensities. The effect of quaternization of picolinic acid on the chemical shifts of the ring protons and carbons is analyzed.  相似文献   

13.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

14.
The crystal and molecular structure of the N-(4-chloro)benzoyl-N′-(4-tolyl)thiourea (C15H13N2OSCl, Mr=304.79) is determined by X-ray diffraction. The crystal structure is monoclinic, space group: P21/n, a=16.097(6), b=4.5989(2), c=19.388(7) Å and β=89.299(6)° V=1434.7(9)Å3, Z=4. FTIR and NMR spectra have been characterized. The interactions of intramolecular and intermolecular hydrogen bonds have been discussed. Density functional theory (DFT) (B3LYP) methods have been used to determine the structure and energies of stable conformers. Minimum energy conformations are calculated as a function of the torsion angle θ (C13–N1–C14–N2) varied every 30°. The optimized geometry corresponding to crystal structure is the most stable conformation. This has partly been attributed to intramolecular hydrogen bonds. With the basis sets of the 6-311G* quality, the DFT calculated bond parameters and harmonic vibrations are predicted in a very good agreement with experimental data.  相似文献   

15.
Crystals of the Schiff base derivative of 2,2′-dihydroxybiphenyl-3-carbaldehyde with n-butylamine were examined using X-ray diffraction, FT-IR and CPMAS spectroscopy. Their space group is with a=8.377(2), b=12.214(2), c=14.774(3) Å, =76.62(3)°, β=81.34(3)°, γ=86.62(3)° and Z=4. The unit cell contains two symmetry-independent zwitterions. The hydrogen atom of the protonated N atom of the Schiff base is linked to the oxygen atom of the carbonyl group at position 2, which in turn is linked to the hydroxyl group by a short hydrogen bond [molecule A: NO=2.614(3), OO=2.520(3) Å; molecule B: NO=2.594(4), OO=2.526(3) Å]. The OHOH+N bifurcated intramolecular hydrogen bonds are crystallographically asymmetric. The results of the FT-IR, 1H, 13C, 15N NMR and CPMAS study of the crystals are in agreement with the X-ray data. Instead of a continuous absorption, only a broad band is found indicating relatively low proton polarizability in the two types of the cooperative relatively short intramolecular hydrogen bonds. The 15N NMR chemical shift indicates the protonation of the Schiff base.  相似文献   

16.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

17.
Condensation of thiosemicarbazide or N(4)-ethylthiosemicarbazide with 1,2,8,9-tetraphenyl-3,7-diazanona-1,9-dione in the presence of copper(II) acetate in 96% ethanol leads to Δ6-5,6-diphenyl-5-methoxy-1,2,4-triazacyclohexene-3-thione, C16H15N3OS, or Δ6-4-methyl-5,6-diphenyl-5-ethoxy-1,2,4-triazacyclohexene-3-thione, C18H19N3OS. For C16H15N3OS the crystal data are monoclinic, P21/c, a=9.7780(7), b=8.5120(3), c=18.2210(13) Å, β=100.958(3)°, V=1488.89(16) Å3, and Z=4 in agreement with an earlier report. For C18H19N3OS the crystal data are orthorhombic, P212121, a=8.6940(3), b=12.9946(3), c=15.5139(5) Å, V=1752.68(9) Å3, and Z=4.  相似文献   

18.
1,2:5,6:9,10:13,14-Tetrabenzo-3,7,11,15-tetradehydro[16]annulene, or tetrabenzocyclyne (QBC) and 1,2:5,6:9,10:13,14:17,18:21,22-hexabenzo-3,7,11,15,19,23-hexadehydro[24]annulene (HBC) have been structurally characterized by X-ray. crystallography. QBC crystallizes in two different space groups; P21/c with a = 10.652(3) Å, b = 10.624(2) Å, c = 19.549(4) Å, β = 93.83(2)°, V = 2207.4(8) Å3, and Z = 4 and P41212 with a = 9.330(1) Å, c = 25.497(8) Å, V = 2219.6(12) Å, and Z = 4. HBC crystallizes in monoclinic P21/n with a = 14.763(3) Å, b = 10.296(2) Å, c = 22.057(4) Å, β = 108.61(3), V = 3177.4(11) Å3, T = 133 K, and Z = 4. Reaction of QBC with dicobaltoctacarbonyl has produced a tetracobalt complex which has been characterized by X-ray crystallography. This complex crystallizes in monoclinic P21/c with a = 14.699(3) Å, b = 17.188(3) Å, c = 17.254(3) Å, β = 112.63(3)°, V = 4023.5(13) Å3, and Z = 4. Only two of the four C---C triple bonds of QBC bind to dicobalthexacarbonyl moieties even when excess dicobaltoctacarbonyl is used.  相似文献   

19.
A tetrasilver(I) phosphonitocavitand was synthesized and structurally characterized. The compound crystallizes in the monoclinic space group P21/n with a=15.0151(13), b=39.832(4), c=15.2479(14) Å, β=95.1000(2)°, V=9083.3(14) Å3 and Z=4. The structure contains four coplanar silver atoms bridged by four μ-Cl and one central trapped μ4-Cl atoms in the inside of the closing bowl-shaped cavitand. Nonlinear optical properties of this metal-cavitand were investigated. Optical limiting effect with threshold of 0.6 J cm−2 was observed with the laser pulses of 7 ns at 532 nm.  相似文献   

20.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号