首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray Photoelectron Spectroscopy (XPS) was used to characterize the functional groups present on regenerated cellulose films after mild oxidation with TEMPO–NaBr–NaClO and the results were correlated with the adhesion forces holding together two wet cellulose films laminated with a thin (i.e. less than 10 mg/m2) layer of polyvinylamine (PVAm). There was no correlation between adhesion and carboxyl content, whereas wet adhesion was proportional to the total content of aldehyde and hemiacetal groups on the cellulose. It is proposed that aldehyde groups react with neighboring cellulose chains to form hemiacetals which serve as crosslinks strengthening the cellulose surface. The hemiacetals can also be attacked by primary amines to give imine and aminal covalent linkages to the PVAm adhesive layer.  相似文献   

2.
Nanostructured adhesive layers were prepared by adsorbing and/or grafting polyvinylamine (PVAm) onto carboxylated poly(N-isopropylacrylamide) (PNIPAM) microgels that were then assembled between layers of wet oxidized cellulose. The wet delamination force was measured as functions of PVAm content, PVAm molecular weight, coverage (mass adhesive/joint area), and the distribution of carboxyl groups in the PNIPAM microgels. The use of microgels is attractive because simple physical adsorption onto the cellulose surfaces before lamination gives much higher adhesive content and strength compared to the corresponding adsorbed linear PVAm. Wet adhesion increased with PVAm content in the microgels and the quantity of microgels in the joint whereas adhesion was independent of PVAm molecular weight. Physical adsorption of the PVAm onto/into the microgels gave the same adhesion as covalently coupled PVAm. Finally, the roles of microgel diameter, elasticity, and coverage were simulated by a simple peel adhesion model in which the microgels were treated as ideal springs.  相似文献   

3.
The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58–64% cellulose, 2–16% hemicellulose, and 24–30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature of the pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200°C for 10 min at neutral pH.  相似文献   

4.
The soft tissue sealing at the transmucal portion of implants is vital for the long-term stability of implants. Hydrogenated titanium nanotubes (H2-TNTs) as implant surface treatments were proved to promote the adhesion of human gingival fibroblasts (HGFs) and have broad usage as drug delivery systems. Bovine serum albumin (BSA) as the most abundant albumin in body fluid was crucial for cell adhesion and was demonstrated as a normal loading protein. As the first protein arriving on the surface of the implant, albumin plays an important role in initial adhesion of soft tissue cells, it is also a common carrier, transferring and loading different endogenous and exogenous substances, ions, drugs, and other small molecules. The aim of the present work was to investigate whether BSA-loaded H2-TNTs could promote the early adhesion of HGFs; H2-TNTs were obtained by hydrogenated anodized titanium dioxide nanotubes (TNTs) in thermal treatment, and BSA was loaded in the nanotubes by vacuum drying; our results showed that the superhydrophilicity of H2-TNTs is conducive to the loading of BSA. In both hydrogenated titanium nanotubes and non-hydrogenated titanium nanotubes, a high rate of release was observed over the first hour, followed by a period of slow and sustained release; however, BSA-loading inhibits the early adhesion of human gingival fibroblasts, and H2-TNTs has the best promoting effect on cell adhesion. With the release of BSA after 4 h, the inhibitory effect of BSA on cell adhesion was weakened.  相似文献   

5.
As a scaffold material for bone tissue engineering, demineralized bone matrix(DBM) has such a limited ability to load cells and growth factors that the surface of the DBM scaffold was modified with bovine serum albumin(BSA) with different concentrations to improve the protein stmcture and physicochemical properties of the scaffold surface so as to enhance the adhesion of the cells. And the appropriate BSA concentration was explored. Compared with DBM, the scaffold with BSA coating had a smaller pore size and a lower porosity, also, the degradation rate was accelerated and the hydrophilic property was improved. Cells adhesion was observed inside the DBM seaffold before and after it had been modified, and the BSA modified scaffold had a good cell compatibility. Wlien the concentration of BSA was 20 mg/mL, the adhesion ability of the cells to modified scaffold was significantly increased, and the cell proliferation was facilitated.  相似文献   

6.
7.
Bovine serum albumin (BSA) was used as an emulsifier to disperse corn oil in aqueous media with various protein concentration, pH, and ionic strength. Quantitative estimation was made on the homogenizing activity of BSA and dispersion stability of oil particles by measuring particle size, turbidity, and creaming rate. Dispersion stability strongly depended on pH and became a minimum around pH 5.0 which was the isoelectric point of BSA. The interfacial tension between BSA solution and corn oil was minimized at pH 5.0. Interesting results were obtained concerning the ionic-strength dependence of stability. When the ionic strength was set below 30 mM, the emulsions became more stable with the increase of BSA concentration at pH 6.7 but the opposite behavior (enhanced destabilization) was confirmed at pH 5.0 with the BSA content. In high ionic strength conditions (ca. > or = 80 mM NaCl), however, BSA-stabilized emulsions became fairly stable even at pH 5.0. These results suggested that BSA molecules having no net charge induced some attractive interactions (e.g., bridging or depletion) in low ionic strength but steric stabilization in high ionic strength, respectively.  相似文献   

8.
Exopolymers are thought to influence bacterial adhesion to surfaces, but the time-dependent nature of molecular-scale interactions of biopolymers with a surface are poorly understood. In this study, the adhesion forces between two proteins and a polysaccharide [Bovine serum albumin (BSA), lysozyme, or dextran] and colloids (uncoated or BSA-coated carboxylated latex microspheres) were analyzed using colloid probe atomic force microscopy (AFM). Increasing the residence time of an uncoated or BSA-coated microsphere on a surface consistently increased the adhesion force measured during retraction of the colloid from the surface, demonstrating the important contribution of polymer rearrangement to increased adhesion force. Increasing the force applied on the colloid (loading force) also increased the adhesion force. For example, at a lower loading force of approximately 0.6 nN there was little adhesion (less than -0.47 nN) measured between a microsphere and the BSA surface for an exposure time up to 10 s. Increasing the loading force to 5.4 nN increased the adhesion force to -4.1 nN for an uncoated microsphere to a BSA surface and to as much as -7.5 nN for a BSA-coated microsphere to a BSA-coated glass surface for a residence time of 10 s. Adhesion forces between colloids and biopolymer surfaces decreased inversely with pH over a pH range of 4.5-10.6, suggesting that hydrogen bonding and a reduction of electrostatic repulsion were dominant mechanisms of adhesion in lower pH solutions. Larger adhesion forces were observed at low (1 mM) versus high ionic strength (100 mM), consistent with previous AFM findings. These results show the importance of polymers for colloid adhesion to surfaces by demonstrating that adhesion forces increase with applied force and detention time, and that changes in the adhesion forces reflect changes in solution chemistry.  相似文献   

9.
Colloidal probe microscopy was employed to study forces between cellulose surfaces upon addition of a series of cationic copolymers in aqueous solution, as model compounds for wet strength agents. The content of quaternary ammonium groups and primary amines was systematically varied in the cationic polymers, to distinguish between the importance of electrostatical and H-bonding effects. Cellulose microspheres were glued at the apex of tipless microfabricated cantilevers and used as colloidal probes. Ultra thin cellulose films and cellulose fibres were employed as model surfaces. The cellulose films of a thickness of about 5 nm were spin-coated from cellulose solution onto silicon substrates. The root-mean-square-roughness (RMS) was 0.3-0.8 nm. The cationic model polymers were compared to Servamine, a polymer employed as standard wet strength resin in papermaking industries. Force versus separation measurements showed a detailed picture of adhesion and contact breaking. Relatively strong adhesion of the order of 0.3 mJ/m(2) was observed with Servamine within a range of approximately 10 nm. At larger distances weak bond breaking and elastic chain pulling were identified. When approaching the surface one to two small jump-in's possibly related to strong binding of Servamine and subsequent attraction could be found in the case of Servamine. In contrast, all the model copolymers showed only a weak adhesion of 8-30 micro/m(2), i.e., an order of magnitude less than that of Servamine and subsequent elastic rupture domains. The contour length, persistence length and characteristic rupture distances were calculated by means of applying the WLC model. Measurements against cellulose fibres obtained from the production process proved the relevance of the model systems.  相似文献   

10.
Polystyrene (PS) bilayers were prepared and were adhered at a temperature between the surface and bulk glass-transition temperatures for a given time. Then, the interfacial adhesion strength (GL) was examined with a conventional lap-shear measurement. GL first increased with increasing adhesion time and then reached a constant value. This result implied that the segments moved across the interface, to a certain depth, even at a temperature below the bulk glass-transition temperature. To confirm this, the interfacial evolution for the PS/deuterated PS bilayers was examined with dynamic secondary-ion mass spectrometry. The GL value was linearly proportional to the thickness of the interfacial adhesion layer. Finally, we propose a strategy for regulating the adhesion strength based on the chain-end chemistry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3598–3604, 2006  相似文献   

11.
The adsorption of two different proteins at a planar poly(acrylic acid) (PAA) brush was studied as a function of the ionic strength of the protein solutions applying total internal reflection fluorescence (TIRF) spectroscopy. Planar PAA brushes were prepared with a grafting density of 0.11 nm(-2) and were characterized using X-ray reflectometry. Hen egg-white lysozyme and bovine serum albumin (BSA) were used as model proteins, which have a net positive and negative charge at neutral pH-values, respectively. It has been found that both proteins adsorb strongly at a planar PAA brush at low ionic strength. Whereas lysozyme interacts with a PAA brush under electrostatic attraction at neutral pH-values, BSA binds under electrostatic repulsion at pH > 5. Even at pH = 8, significant amounts of BSA are adsorbed to a planar PAA brush. In addition, the reversibility of BSA adsorption has been characterized. Dilution of a BSA solution leads to an almost complete desorption of BSA from a PAA brush at short contact times. When the ionic strength of the protein solutions is increased to about 100-200 mM, a planar PAA brush appears largely protein-resistant, regardless of the protein net charge. The results of this study indicate that the salt-dependent protein affinity of a PAA brush represents a unique effect that must be explained by a novel protein-binding mechanism. On the basis of a recent model, it is suggested that a release of counterions is the most probable driving force for protein adsorption at a PAA brush. In a general view, this study characterizes a planar PAA brush as a new materials coating for the controlled immobilization of proteins whose use in biotechnological applications appears to be rewarding.  相似文献   

12.
Both proteins and polysaccharides are biopolymers present on a bacterial surface that can simultaneously affect bacterial adhesion. To better understand how the combined presence of proteins and polysaccharides might influence bacterial attachment, adhesion forces were examined using atomic force microscopy (AFM) between colloids (COOH- or protein-coated) and polymer-coated surfaces (BSA, lysozyme, dextran, BSA+dextran and lysozyme+dextran) as a function of residence time and ionic strength. Protein and dextran were competitively covalently bonded onto glass surfaces, forming a coating that was 22-33% protein and 68-77% dextran. Topographic and phase images of polymer-coated surfaces obtained with tapping mode AFM indicated that proteins at short residence times (<1 s) were shielded by dextran. Adhesion forces measured between colloid and polymer-coated surfaces at short residence times increased in the order protein+dextran < or = protein < dextran. However, the adhesion forces for protein+dextran-coated surface substantially increased with longer residence times, producing the largest adhesion forces between polymer coated surfaces and the colloid over the longest residence times (50-100 s). It was speculated that with longer interaction times the proteins extended out from beneath the dextran and interacted with the colloid, leading to a molecular rearrangement that increased the overall adhesion force. These results show the importance of examining the effect of the combined adhesion force with two different types of biopolymers present and how the time of interaction affects the magnitude of the force obtained with two-polymer-coated surfaces.  相似文献   

13.
The influence of ionic strength and protein concentration on the transport of bovine serum albumin (BSA), ovalbumin and lysozyme through chitosan (CHI)/polystyrenesulfonate (PSS) multilayers on polyether sulfone supports are investigated under ultrafiltration conditions. The percentage transmission and flux of BSA, ovalbumin and lysozyme were found to increase with increase in salt concentration in the protein. The percentage transmission of BSA through 9 bilayer membrane was found to increase from 5.3 to 115.6 when the salt concentration was varied from 0 to 1 M. It was observed that 0.1 M NaCl in BSA solution is capable of permeating all the BSA. When the salt concentration in BSA was further increased, a negative solute rejection (solute enrichment in permeate) was found to take place. With 9 bilayer membrane, the percentage transmission of ovalbumin was found to increase from 23.3 to 125.8 when the salt concentration in protein was increased from 0 to 0.05 M. The effect of protein concentration on protein transport is studied taking BSA as a model protein. BSA was rejected by the multilayer membrane at all the studied concentrations (0.25, 0.5, 1 and 2 mg/ml). With increase in feed concentration, maximum rejection of protein occurred at higher number of CHI/PSS bilayers. BSA solution flux was found to decrease with an increase in BSA concentration. This study indicates that it is possible to fine tune the transport properties of proteins through multilayer membranes by varying the concentration and ionic strength of protein solutions.  相似文献   

14.
Bovine serum albumin (BSA) is a soft globular protein that undergoes conformational changes through several identified transition steps in the pH range 2–13.5. The ability to change conformation makes BSA capable of complexing different ligands from fatty acids to cations or drugs and carries them in the bloodstream. Microcalorimetric titration of BSA with NaOH solution was performed to measure the enthalpy of conformational changes. Two exothermic enthalpy changes were found in the course of the titration between pH 3 and 9.5, which can be identified with the E–F, and the F–N transitions. The enthalpy change at pH 3.5 (transition from the E to the F form of BSA, folding of intra-domain helices in domain I) is independent of the protein concentration. The second transition (F–N, folding of domain III) was observed at pH 4.8 for the 0.1% BSA solution, but it shifted to higher pH values as the protein concentration increased to 0.2% and 0.3%. The tightening of the protein structure with increasing pH was verified measuring intrinsic fluorescence of tryptophan residues. At even higher pH value, pH 10.5, fluorescence measurements revealed protein expansion. The BSA conformational changes were also measured by dynamic light scattering. The hydrodynamic diameter was smaller at the i.e.p. of BSA (5–7 nm at pH ~5) and larger at the two ends of the pH range (17.5 nm at pH 2 and 8.3 nm at pH 10).  相似文献   

15.
Polymer emulsion having ethyleneurea groups at particle surfaces was produced by emulsifier-free seeded emulsion copolymerization of n-butyl methacrylate (BMA) and methacrylamide ethylethyleneurea (EU) with poly(BMA) seed particles utilizing the starved-fed monomer addition method. This emulsion film, prepared by casting the polymer emulsion on an alkyd resin plate, had a superior adhesion in water, as well as on stainless steel. Such superior wet adhesions seem to be based on a large amount of EU predominantly localized at the particle surfaces.Part CCXLIX of the series "Studies on suspension and emulsion"  相似文献   

16.
An acrylamide‐type copolymer containing catechol, amino, and hydroxyl groups was synthesized as a mimetic of the natural mussel adhesive protein (MAP). The obtained copolymer in a phosphate buffer solution (pH = 8.0) formed a hydrogel within 2 h under air, whereas gelation did not proceed under argon atmosphere. We confirmed that the cross‐linking reaction of the synthesized MAP mimetic copolymer was triggered by aerobic oxidation of catechol moieties to form an adhesive hydrogel. Two aluminum plates were adhered by the gelation of the MAP mimetic copolymer solution under humid air at room temperature. The interfacial region between the two aluminum plates failed at a lap shear strength of 0.46 MPa due to cohesive failure of the hydrogel. The adhesion strength was dominated by mechanical strength of the hydrogel as well as the interface interaction of catechol groups with substrate surface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Osmotic pressures have been measured to determine lysozyme—lysozyme,BSA—BSA, and lysosyme—BSA interactions for protein concentrations to 100 g-L–1in an aqueous solution of ammonium sulfate at ambient temperature, as a functionof ionic strength and pH. Osmotic second virial coefficients for lysozyme, forBSA, and for a mixture of BSA and lysozyme were calculated from theosmotic-pressure data for protein concentrations to 40 g-L–1. The osmotic second virialcoefficient of lysozyme is slightly negative and becomes more negative withrising ionic strength and pH. The osmotic second virial coefficient for BSA isslightly positive, increasing with ionic strength and pH. The osmotic second virialcross coefficient of the mixture lies between the coefficients for lysozyme andBSA, indicating that the attractive forces for a lysozyme—BSA pair areintermediate between those for the lysozyme—lysozyme and BSA—BSA pairs. For proteinconcentrations less than 100 g-L–1, experimental osmotic-pressure data comparefavorably with results from an adhesive hard-sphere model, which has previouslybeen shown to fit osmotic compressibilities of lysozyme solutions.  相似文献   

18.
The effects of pH of the buffer solution and the composition of the hydrogel system on the bovine serum albumin (BSA) adsorption capacity of chitosan (CS)–polyvinyl pyrrolidone (PVP) (CSPVP) hydrogels and release of BSA were investigated. Poly-electrolyte CSPVP hydrogels with different compositions were prepared by irradiating CS/PVP/water mixtures with γ-rays at ambient temperature. The adsorption capacity of hydrogels was found to increase from 0 to 350 mg BSA/g dry gel, by changing external stimuli and hydrogel composition. The adsorption of BSA within CSPVP hydrogels increased with increase in CS content in the hydrogels. When the irradiation doses of hydrogel increased, the adsorption of BSA decreased. The maximum adsorption of BSA was observed at pH 5. A significant amount of the adsorbed BSA (up to 95%) was eluted in the phosphate medium containing 0.1 M NaCl at pH 7.4.  相似文献   

19.
Tan G  Shi Q  Sun Y 《Electrophoresis》2005,26(16):3084-3093
A novel preparative size-exclusion electrochromatography with an oscillatory low-voltage electric field perpendicular to the liquid phase streamline (pSEEC) was proposed with a column design of rectangular cross-section. The column of 12 cm length was packed with Sephadex G-75, and the retention behavior of bovine serum albumin (BSA) and myoglobin (Myo) was extensively investigated under various conditions. The results indicated that the partition coefficient of a charged protein increased significantly on increasing the current strength as well as the difference between its pI and pH. The partition coefficient also increased on decreasing the mobile phase conductivity. For the gel-excluded protein like BSA, the concentration polarization (CP) on the gel surface induced by the protein electromigration was the main reason for the increased retention. For a gel-permeable protein like Myo, both the CP and electrophoretic migration in the solid phase contributed to its increased retention. Further results exhibited that the polarization would be offset by diffusion, because the accumulated protein would flux back to the bulk liquid phase. Therefore, when the electrically induced mass flux was equal to the diffusion flux, the partition coefficient did not change with a further increase of the oscillatory current cycle. Finally, pSEEC was compared with SEC in the separation of protein mixtures of BSA/Myo as well as BSA/Myo/lysozyme. The results showed much better resolutions of the protein mixtures in pSEEC with the column as short as 12 cm. The potential of pSEEC for preparative protein separation was therefore demonstrated.  相似文献   

20.
In this paper cellulose nanofibrils were used together with a cationic polylelectrolyte, poly(amideamine) epichlorohydrin (PAE), to enhance the wet and the dry strength of paper. The adsorption of nanofibrils and PAE on cellulose model surfaces was studied using quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The differences in fibril and polyelectrolyte adding strategies onto cellulose fibres were studied by comparing layer-structures and nano-aggregates formed by the nanofibrils and PAE. The results showed that when PAE was first adsorbed on the model fibre surface a uniform and viscous layer of nanofibrils could be adsorbed. When PAE and nanofibrils were adsorbed as cationic aggregates a non-uniform and more rigid layer was adsorbed. Paper sheets were prepared using both the bi-layer and nano-aggregate adding strategy of the nanofibrils and PAE. When PAE and nanofibrils were adsorbed on pulp fibres as a bi-layer system significant increase in both wet and dry tensile strength of paper could be achieved even at low added amounts of PAE. When the substances were added as nano-aggregates the improvements in paper strength properties were not as significant. Bulk and surface nitrogen content analyses of the paper samples showed that the adding strategy does not affect the total adsorbed amount of PAE but it has a strong effect on distribution of substances in the paper matrix which has a crucial effect on paper wet and dry strength development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号