首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper is devoted to study a coupled Schr?dinger system with a small perturbation $$\begin{array}{ll}u_{xx} - u + u^{3} + \beta uv^{2} + \epsilon f( \epsilon, u, u_{x}, v, v_{x}) = 0 \quad {\rm in} \, {\bf R}, \\v_{xx} + v - v^{3} + \beta u^{2}v + \epsilon g( \epsilon, u, u_{x}, v, v_{x}) = 0 \quad {\rm in} \, {\bf R} \end{array}$$ where β is a constant and ε is a small parameter. We first show that this system has a periodic solution and its dominant system has a homoclinic solution exponentially approaching zero. Then we apply the fixed point theorem and the perturbation method to prove that this homoclinic solution deforms to a homoclinic solution exponentially approaching the obtained periodic solution (called generalized homoclinic solution) for the whole system. Our methods can be used to other four dimensional dynamical systems like the Schr?dinger-KdV system.  相似文献   

2.
We study the regularity and the asymptotic behavior of the solutions of the initial value problem for the porous medium equation $$\begin{gathered} {\text{ }}u_t = \left( {u^m } \right)_{xx} {\text{ in }}Q = \mathbb{R} \times \left( {{\text{0,}}\infty } \right){\text{,}} \hfill \\ u\left( {x{\text{,0}}} \right) = u_{\text{0}} \left( x \right){\text{ for }}x \in \mathbb{R}{\text{,}} \hfill \\ \end{gathered}$$ with m > 1 and, u 0a continuous, nonnegative function. It is well known that, across a moving interface x=ζ(t) of the solution u(x, t), the derivatives v tand v x of the pressure v = (m/(m?1)) u m?1 have jump discontinuities. We prove that each moving part of the interface is a C curve and that v is C on each side of the moving interface (and up to it). We also prove that for solutions with compact support the pressure becomes a concave function of x after a finite time. This fact implies sharp convergence rates for the solution and the interfaces as t→∞.  相似文献   

3.
The authors consider the problem of finding u=u(x, t) and p=p(t) which satisfy u = Lu + p(t) + F(x, t, u, x, p(t)) in Q T=Ω×(0, T], u(x, 0)=ø(x), x∈Ω, u(x, t)=g(x, t) on ?Ω×(0, T] and either ∫G(t) Φ(x,t)u(x,t)dx = E(t), 0 ? t ? T or u(x0, t)=E(t), 0≤tT, where Ω?R n is a bounded domain with smooth boundary ?Ω, x 0∈Ω, L is a linear elliptic operator, G(t)?Ω, and F, ø, g, and E are known functions. For each of the two problems stated above, we demonstrate the existence, unicity and continuous dependence upon the data. Some considerations on the numerical solution for these two inverse problems are presented with examples.  相似文献   

4.
Motivated by recent attenuation experiments on finely grained samples, we reanalyse the Raj-Ashby model of grain-boundary sliding. Two linearly elastic layers having finite thickness and identical elastic constants are separated by an interface (grain boundary) whose location is a given periodic function of position. Dissipation is confined to that interfacial region. It is caused by two mechanisms: a slip (boundary sliding) viscosity, and grain-boundary diffusion, with corresponding Maxwell relaxation times tv and td. Owing to the assumption of a given, time-independent interface, the resulting boundary-value problem (b.v.p.) is linear and time-separable. The response to time-periodic forcing depends on angular frequency ω, on the ratio M=tv/td of Maxwell times, and on the characteristic interface slope. The b.v.p. is solved using a perturbation method valid for small slopes. To relate features of the mechanical loss spectrum previously studied in isolation, we first discuss the solution as a function of M. Motivated by experiments, we then emphasize the case M?1 in which the relaxation times are widely separated. The loss spectrum then always has two major features: a frequency band 1?ωtd?M-1 within which the loss varies relatively weakly with ω; and a loss maximum at ωtdM-1 due to the slip viscosity. If corners on the interface are sufficiently rounded, those two universal features are separated by a third feature: between them, there is a strong minimum whose location is (entirely) independent of slip viscosity. The existence of that minimum has not previously been reported. These features are likely to occur even in solutions for finite interface slopes, because they are a consequence of the separation of timescales. The precise form of the spectrum in the weakly varying band must, however, be slope-dependent because it is controlled by stress singularities occurring at corners, and the strength of those singularities depends on the angle subtended by the corner.  相似文献   

5.
We consider the following nonlinear Schrödinger system in ${\mathbb{R}^3}$ $$\left\{\begin{array}{ll}-\Delta u + P(|x|)u = \mu u^{2}u + \beta v^2u,\quad x \in \mathbb{R}^3,\\-\Delta v + Q(|x|)v = \nu v^{2}v + \beta u^2v,\quad x \in \mathbb{R}^3,\end{array}\right.$$ where P(r) and Q(r) are positive radial potentials, ${\mu > 0, \nu > 0}$ and ${\beta \in \mathbb{R}}$ is a coupling constant. This type of system arises, in particular, in models in Bose–Einstein condensates theory. We examine the effect of nonlinear coupling on the solution structure. In the repulsive case, we construct an unbounded sequence of non-radial positive vector solutions of segregated type, and in the attractive case we construct an unbounded sequence of non-radial positive vector solutions of synchronized type. Depending upon the system being repulsive or attractive, our results exhibit distinct characteristic features of vector solutions.  相似文献   

6.
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form
We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C 1.  相似文献   

7.
We consider infiltration into a soil that is assumed to have hydraulic conductivity of the form K = K = Kseh and water content of the form = K – r. Here h denotes capillary pressure head while Ks, , and r represent soil specific parameters. These assumptions linearize the flow equation and permit a closed form solution that displays the roles of all the parameters appearing in the hydraulic function K and . We assume Ks and r to be known. A measurement of diffusivity fixes the product of and resulting in a parameter identification problem for one parameter. We show that this parameter identification problem, in some cases, has a unique solution. We also show that, in some cases, this parameter identification problem can have multiple solutions, or no solution. In addition it is shown that solutions to the parameter identification problem can be very sensitive to small changes in the problem data.  相似文献   

8.
A self-similar solution of the Navier-Stokes equations describing steady-state axisymmetric viscous incompressible fluid flow in a half-space is investigated. The motion is induced by sources or sinks distributed over a vertical axis with a constant density. The horizontal plane bounding the fluid is a free surface. It is found that in the presence of sources a solution of the above type exists and is unique for any value of the Reynolds numberR > 0, but in the case of sinks only on the interval –2 R < 0. The results of calculating the self-similar solutions are presented. The asymptotics of the solutions are found asR 0 andR .Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 53–65, March–April, 1996.  相似文献   

9.
We consider a Riemann problem for the shallow water system \(u_{t} +\big (v+\textstyle \frac{1}{2}u^{2}\big )_{x}=0\), \(v_{t}+\big (u+uv\big )_{x}=0\) and evaluate all singular solutions of the form \(u(x,t)=l(t)+b(t)H\big (x-\gamma (t)\big )+a(t)\delta \big (x-\gamma (t)\big )\), \(v(x,t)=k(t)+c(t)H\big (x-\gamma (t)\big )\), where \(l,b,a,k,c,\gamma :\mathbb {R}\rightarrow \mathbb {R}\) are \(C^{1}\)-functions of time t, H is the Heaviside function, and \(\delta \) stands for the Dirac measure with support at the origin. A product of distributions, not constructed by approximation processes, is used to define a solution concept, that is a consistent extension of the classical solution concept. Results showing the advantage of this framework are briefly presented in the introduction.  相似文献   

10.
Let Ω be a bounded smooth domain in \({{R}^N, N \geqq 2}\), and let us denote by d(x) the distance function d(x, ?Ω). We study a class of singular Hamilton–Jacobi equations, arising from stochastic control problems, whose simplest model is
$ - \alpha \Delta u+ u + \frac{\nabla u \cdot B (x)}{d (x)}+ c(x) |\nabla u|^2=f (x) \quad {\rm in}\,\Omega, $
where f belongs to \({W^{1,\infty}_{\rm loc} (\Omega)}\) and is (possibly) singular at \({\partial \Omega, c\in W^{1,\infty} (\Omega)}\) (with no sign condition) and the field \({B\in W^{1,\infty} (\Omega)^N}\) has an outward direction and satisfies \({B\cdot \nu\geqq \alpha}\) at ?Ω (ν is the outward normal). Despite the singularity in the equation, we prove gradient bounds up to the boundary and the existence of a (globally) Lipschitz solution. We show that in some cases this is the unique bounded solution. We also discuss the stability of such estimates with respect to α, as α vanishes, obtaining Lipschitz solutions for first order problems with similar features. The main tool is a refined weighted version of the classical Bernstein method to get gradient bounds; the key role is played here by the orthogonal transport component of the Hamiltonian.
  相似文献   

11.
Two pragmatic boundary value and eigenvalue problems of the Emden-Fowler equation (tαu′)′ + λtβ?(u) = 0,?(u) = uγ and eu are studied using the simple one parameter group properties. In all cases boundary value problems are converted into initial value problems using the property of the invariance group. With ?(u) = uγ an eigenvalue problem is detailed and calculations presented.  相似文献   

12.
Many wave propagation phenomena of classical physics are governed by systems of the Schrödinger form-iD t u+Λu=f(x,t) where 1 $$\Lambda = - iE(x)^{ - 1} \sum\limits_{j = 1}^n {(A_j D_j )} $$ , (1) E(x) and the A j are Hermitian matrices, E(x) is positive definite and the Aj are constants. If f(x, t)=e ?iλt f(x) then a corresponding steady-state solution has the form u(x, t)=e?i λ tν(x) where ν(x) satisfies (Λ-λ) ν=f(x), xεR n . (2) This equation does not have a unique solution for λεR 1?{0} and it is necessary to add a radiation condition for ¦ x ¦ → ∞ which ensures that ν(X) behaves like an outgoing wave. The limiting absorption principle provides one way to construct the correct outgoing solution of (2). It is based on the fact that Λ defines a self-adjoint operator on the Hilbert space ? defined by the energy inner product 2 $$(u,v) = \int\limits_{R^n } {u^* } E{\text{ }}v{\text{ }}d{\text{ }}x$$ . It follows that if ζ=λ+ and σ≠0 then (Λ-ζ) ν=f has a unique solution 3 $$v(,\zeta ) = R_\zeta (\Lambda )f \in $$ ? where 4 $$R_\zeta (\Lambda ) = (\Lambda - \zeta )^{ - 1} $$ is the resolvent for Λ on ?. The limiting absorption principle states that 5 $$v(,\lambda ) = \mathop {\lim }\limits_{\sigma \to 0} v(,\lambda + i\sigma )$$ (3) exists, locally on R n, and defines the outgoing solution of (2). This paper presents a proof of the limiting absorption principle, under suitable hypotheses on E(x) and the A j . The proof is based on a uniqueness theorem for the steady-state problem and a coerciveness theorem for nonelliptic operators Λ of the form (1) which were recently proved by the authors. The coerciveness theorem and limiting absorption principle also provide information about the spectrum of Λ. It is proved in this paper that the point spectrum of Λ is discrete (that is, there are finitely many eigenvalues in any interval) and that the continuous spectrum of Λ is absolutely continuous.  相似文献   

13.
The existence of a nonautonomous approximate inertial manifold is shown for problems of the formu + Au + N(t,u)=0, in whichA is a self-adjoint operator with compact resolvent in a Hilbert spaceH. The operatorN(t, u) = G(u) + F(t, u) is nonlinear withG a monotone gradient that is locally Lipschitz fromD(A 1/2) intoH, andF:+×HH a Lipschitz perturbation that is Hölder continuous int. Weak solutions are shown to be uniformly locally Hölder continuous intoD(A) with equicontinuity in families of solutions with ¦u(0)¦ r.A priori estimates of ¦Au(t)¦ are also verified and used in a skew-product flow to show there is a global attractor whose component elements form a equicontinuous family of solutions.  相似文献   

14.
In this paper, the problems of non-slipping contact, non-slipping adhesive contact, and non-slipping adhesive contact with a stretched substrate are sequentially studied under the plane strain theory. The main results are obtained as follows:(i) The explicit solutions for a kind of singular integrals frequently encountered in contact mechanics (and fracture mechanics) are derived, which enables a comprehensive analysis of non-slipping contacts. (ii) The non-slipping contact problems are formulated in terms of the Kolosov–Muskhelishvili complex potential formulae and their exact solutions are obtained in closed or explicit forms. The relative tangential displacement within a non-slipping contact is found in a compact form. (iii) The spatial derivative of this relative displacement will be referred to in this study as the interface mismatch eigenstrain. Taking into account the interface mismatch eigenstrain, a new non-slipping adhesive contact model is proposed and its solution is obtained. It is shown that the pull-off force and the half-width of the non-slipping adhesive contact are smaller than the corresponding solutions of the JKR model (Johnson et al., 1971). The maximum difference can reach 9% for pull-off force and 17% for pull-off width, respectively. In contrast, the new model may be more accurate in modeling the non-slipping adhesion. (iv) The non-slipping adhesions with a stretch strain (S-strain) imposed to one of contact counterparts are re-examined and the analytical solutions are obtained. The accurate analysis shows that under small values of the S-strain both the natural adhesive contact half-width and the pull-off force may be augmented, but for the larger S-strain values they are always reduced. It is also found that Dundurs’ parameter β may exert a considerable effect on the solution of the pull-off problem under the S-strain.These solutions may be used to study contacts at macro-, micro-, and nano-scales.  相似文献   

15.
The paper is concerned with the asymptotic behavior as t of solutions u(x,t) of the equation in the case f(0)=f(1)=0, with f(u) non-positive for u(>0) sufficiently close to zero and f(u) non-negative for u(<1) sufficiently close to 1. This guarantees the uniqueness (but not the existence) of a travelling front solution u;U(x–ct), U(–);0, U();, and it is shown in essence that solutions with monotonic initial data converge to a translate of this travelling front, if it exists, and to a stacked combination of travelling fronts if it does not. The approach is to use the monotonicity to take u and t as independent variables and p = u x as the dependent variable, and to apply ideas of sub- and super-solutions to the diffusion equation for p.This research was sponsored by the United States Army under Contract No. DAAG29-75-C-0024.  相似文献   

16.
In this paper we obtain an integral representation for the relaxation inBV(Ω; ? p ) of the functional $$u \mapsto \int\limits_\Omega {f(x.\nabla u(x))dx + \int\limits_{\sum _{(u)} } {\varphi (x,[u](x),v(x))dH_{N - 1} (x)} }$$ with respect to theBV weak * convergence.  相似文献   

17.
The motion of a viscous thermally stratified liquid in a spherical layer due to rotation of the boundaries of the layer at different angular velocities with nonuniform (latitudinal) heating of the outer boundary is investigated. The investigated problem can be regarded as a very simple qualitative model of some astrophysical and geophysical effects, e.g., flows in planetary atmospheres. The characteristic parameters of the problem are the Reynolds number Re=ri 2i/, the ratios of the angular velocities of rotation =e/i and of the radiia=re/ri of the outer and inner spheres, and the heating nonuniformity parameter . The Boussinesq approximation is adopted in the investigation: It is assumed that the Reynolds numbers Re are fairly small and the solution is sought in the form of a series of whole positive powers of Re. The first two terms of the series are found in analytical form for arbitrary values of the other characteristic parameters. Possible types of meridional flows are established and the regions of the parameters in which a particular type of circulation takes place are determined. It is shown that a latitudinal temperature gradient on the outer boundary leads to the appearance of new (in comparison with the isothermal case) types of meridional flows. The asymptotic form of the stream function of meridional flow in very thin and very thick layers is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 15–23, March–April, 1975.  相似文献   

18.
《Comptes Rendus Mecanique》2007,335(5-6):295-303
The present work uses the Lattice Boltzmann method for solving solid/liquid phase change problems. The computed results demonstrate a good agreement with the existing benchmark solution for natural convection and with the experimental solution for solid/liquid interface interacting with the flow field. To cite this article: E. Semma et al., C. R. Mecanique 335 (2007).  相似文献   

19.
Arbitrarily oriented crack near interface in piezoelectric bimaterials is considered. After deriving the fundamental solution for an edge dislocation near the interface, the present problem can be expressed as a system of singular integral equations by modeling the crack as continuously distributed edge dislocations. In the paper, the dislocations are described by a density function defined on the crack line. By solving the singular integral equations numerically, the dislocation density function is determined. Then, the stress intensity factors (SIFs) and the electric displacement intensity factor (EDIF) at the crack tips are evaluated. Subsequently, the influences of the interface on crack tip SIFs, EDIF, and the mechanical strain energy release rate (MSERR) are investigated. The J-integral analysis in piezoelectric bimaterals is also performed. It is found that the path-independent of J1-integral and the path-dependent of J2-integral found in no-piezoelectric bimaterials are still valid in piezoelectric bimaterials.  相似文献   

20.
Green’s functions for isotropic materials in the two-dimensional problem for elastic bimaterials with perfectly bonded interface are reexamined in the present study. Although the Green’s function for an isotropic elastic bimaterial subjected to a line force or a line dislocation has been discussed by many authors, the physical meaning and the structure of the solution are not clear. In this investigation, the Green’s function for an elastic bimaterial is shown to consist of eight Green’s functions for a homogeneous infinite plane. One of the novel features is that Green’s functions for bimaterials can be expressed directly by knowing Green’s functions for the infinite plane. If the applied load is located in material 1, the solution for the half-plane of material 1 is constructed with the help of five Green’s functions corresponding to the infinite plane. However, the solution for the half-plane of material 2 only consists of three Green’s functions for the infinite plane. One of the five Green’s functions of material 1 and all the three Green’s functions of material 2 have their singularities located in the half-plane where the load is applied, and the other four image singularities of material 1 are located outside the half-plane at the same distance from the interface as that of the applied load. The nature and magnitude of the image singularities for both materials are presented explicitly from the principle of superposition, and classified according to different loads. It is known that for the problem of anisotropic bimaterials subjected to concentrated forces and dislocations, the image singularities are simply concentrated forces and dislocations with the stress singularity of order O(1/r). However, higher orders (O(1/r2) and O(1/r3)) of stress singularities are found to exist in this study for isotropic bimaterials. The highest order of the stress singularity is O(1/r3) for the image singularities of material 1, and is O(1/r2) for material 2. Using the present solution, Green’s functions associated with the problems of elastic half-plane with free and rigidly fixed boundaries, for homogeneous isotropic elastic solid, are obtained as special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号