首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fluorescence resonance energy transfer has been studied between lanthanide(III) chelates as donors and protein-coupled CdTe semiconductor nanoparticles as acceptors. Wide excitation spectra and large Stokes shift of semiconductor nanoparticles and timeresolved fluorescence detection were shown to provide a combination for successful energy transfer assay. Different intrinsically fluorescent europium(III) and terbium(III) chelates coupled to single biotin molecules were studied for optimal energy transfer with streptavidin labeled semiconductor nanoparticles. No significant differences between the studied chelates were observed. The strength of the methodology was demonstrated in a clinically relevant competitive and separation-free immunoassay of estradiol, where subnanomolar limit of detection was achieved with the coefficient of variation 2-11%. The data suggested that relatively short distance was needed to obtain adequate energy transfer. Therefore, biomolecules were coupled onto the semiconductor nanoparticles without any spacers.  相似文献   

2.
Nanoparticles containing thousands of fluorescent europium(III) chelates have a very high specific activity compared to traditional lanthanide chelate labels. It can be assumed that if these particles are used in a homogeneous assay as donors, multiple chelates can excite a single acceptor in turns and the energy transfer to the acceptor is increased. The principle was employed in an immunoassay using luminescent resonance energy transfer from a long lifetime europium(III) chelate-dyed nanoparticle to a short lifetime, near-infrared fluorescent molecule. Due to energy transfer fluorescence lifetime of the sensitised emission was prolonged and fluorescence could be measured using a time-resolved detection.A competitive homogeneous immunoassay for estradiol was created using 92 nm europium(III) chelate-dyed nanoparticle coated with 17β-estradiol specific recombinant antibody Fab fragments as a donor and estradiol conjugated with near-infrared dye AlexaFluor 680 as an acceptor. The density of Fab fragments on the surface of the particle influenced the sensitivity of the immunoassay. The optimal Fab density was reached when the entire surface of the particle participated in the energy transfer, but the areas where the energy was transferred to a single acceptor, did not overlap. We were able to detect estradiol concentrations down to 70 pmol l−1 (3×SD of a standard containing 0 nmol l−1 of E2) using a 96-well platform. In this study we demonstrated that nanoparticles containing lanthanide chelates could be used as efficient donors in homogeneous assays.  相似文献   

3.
Luminescence studies on europium-strontium phthalate system   总被引:1,自引:0,他引:1  
New lanthanide luminescence materials were prepared. The main component lanthanide chelates generally need a relatively high content of rare earth. Inorganic luminescence materials only need low rare earth concentration using doped method. Similarly, lanthanide chelates can be added to complex matrix by doped method. In this way, low rare earth concentration emission was successful in the lanthanide chelates system as well. The influence of europium ion concentration on luminescence intensities was discussed. When the europium ion weight in the complex is only about 0.6%, the sample exhibits good luminescence properties. The fluorescence, Fourier transform infrared spectra, micro-Raman and electron spin resonance spectra of the samples were measured. And a possible luminescence mechanism was suggested by the inorganic doped mechanism and the luminescence of lanthanide complexes together.  相似文献   

4.
In many EuIII‐based materials, the presence of an intermediate energy level, such as ligand‐to‐metal charge transfer (LMCT) states or defects, that mediates the energy transfer mechanisms can strongly affect the lifetime of the 5D0 state, mainly at near‐resonance (large transfer rates). We present results for the dependence of the 5D0 lifetime on the excitation wavelength for a wide class of EuIII‐based compounds: ionic salts, polyoxometalates (POMs), core/shell inorganic nanoparticles (NPs) and nanotubes, coordination polymers, β‐diketonate complexes, organic–inorganic hybrids, macro‐mesocellular foams, functionalized mesoporous silica, and layered double hydroxides (LDHs). This yet unexplained behavior is successfully modelled by a coupled set of rate equations with seven states, in which the wavelength dependence is simulated by varying the intramolecular energy transfer rates. In addition, the simulations of the rate equations for four‐ and three‐level systems show a strong dependence of the emission lifetime upon the excitation wavelength if near‐resonant non‐radiative energy transfer processes are present, indicating that the proposed scheme can be generalized to other trivalent lanthanide ions, as observed for TbIII/CeIII. Finally, the proper use of lifetime definition in the presence of energy transfer is emphasized.  相似文献   

5.
Works concerning the application of nonradiative transfer of electronic excitation energy to investigation into nanostructures of lanthanide complexes in aqueous solutions are surveyed. The effect of the formation of nanosized structures on the quenching of energy donors Ln(III) ions by acceptor ions in concentrated chloride solutions of structuring ions (Li(I), Ca(II)) was discussed. The columinescence phenomenon observed in aqueous solutions of lanthanide chelates was considered. It was shown that the enhancement of luminescence Eu(III) and Tb(III) complexes in water in the presence of excess β-diketones with an admixture of other Ln(III) ions, primarily Gd(III), (columinescence) is due to sensitization via energy transfer over triplet levels of the ligands in the nanostructures formed under these conditions and to the weakening of deactivation of excited luminescent ions by the formation of nanostructures. The influence of the solution preparation procedure on the formation of nanostructures of chelates with different lanthanide ions was revealed, which manifest itself as a variation in the enhancement and quenching of luminescence in the presence of ions from the cerium and yttrium subgroups. Possible applications of the columinescence phenomenon to chemical and medical analysis are briefly discussed.  相似文献   

6.
An ab initio approach is developed for calculation of low-lying excited states in Ln(3+) complexes with organic ligands. The energies of the ground and excited states are calculated using the XMCQDPT2/CASSCF approximation; the 4f electrons of the Ln(3+) ion are included in the core, and the effects of the core electrons are described by scalar quasirelativistic 4f-in-core pseudopotentials. The geometries of the complexes in the ground and triplet excited states are fully optimized at the CASSCF level, and the resulting excited states have been found to be localized on one of the ligands. The efficiency of ligand-to-lanthanide energy transfer is assessed based on the relative energies of the triplet excited states localized on the organic ligands with respect to the receiving and emitting levels of the Ln(3+) ion. It is shown that ligand relaxation in the excited state should be properly taken into account in order to adequately describe energy transfer in the complexes. It is demonstrated that the efficiency of antenna ligands for lanthanide complexes used as phosphorescent emitters in organic light-emitting devices can be reasonably predicted using the procedure suggested in this work. Hence, the best antenna ligands can be selected in silico based on theoretical calculations of ligand-localized excited energy levels.  相似文献   

7.
The role of the antenna in the process of the host sensitized luminescence of the DOTA cage coordinated with the Eu ion is investigated. The analysis of the optimal geometries of DOTA modified by several antennas is based on the results of density functional theory (DFT) calculations. The physical environment of the luminescence center (the lanthanide ion) is illustrated by charge density maps and described by the values of the crystal field parameters directly evaluated. The conclusions derived from this theoretical analysis support earlier observations that antennas attached to the cage play the sole role of harvesting and transferring the energy to the lanthanide ion, whereas the cage perturbs the symmetry of the environment of the lanthanide ion, giving rise to the sensitized luminescence. The implications of the separation of the two parts of the organic chelate, cage and antenna, are discussed within the theoretical models of the energy transfer and of forced f <--> f electric dipole transitions.  相似文献   

8.
The energy transfer pathways in lanthanide antenna probes cannot be comprehensively rationalized by the currently available models, and their elucidation remains to be a challenging task. On the basis of quantum-chemical ab initio calculations of representative europium antenna complexes, an innovative energy resonance model is proposed, which is controlled by an overall nonet–quintet intersystem crossing on the basis of spin–orbit coupling among the sublevels of the involved states.  相似文献   

9.
A comprehensive series of lanthanide chelates has been prepared with a tetrapropargyl DOTAM type ligand. The complexes have been characterized by a combination of (1)H NMR, single-crystal X-ray crystallography, CEST and relaxation studies and have also been evaluated for potential use as paramagnetic chemical exchange saturation transfer (ParaCEST) contrast agents in magnetic resonance imaging (MRI). We demonstrate the functionalization of several chelates by means of alkyne-azide "click" chemistry in which a glucosyl azide is used to produce a tetra-substituted carbohydrate-decorated lanthanide complex. The carbohydrate periphery of the chelates has a potent influence on the CEST properties as described herein.  相似文献   

10.
Yb^3+和Er^3+离子掺杂的NaYF4纳米晶在近红外光(980nm)激发下可产生中心位于539和655nm的上转换发光,其中位于539nm的发光与四甲基异氰酸罗丹明(tetrametrylrhodarnine isothiocyante,TRITC)染料分子的吸收光谱部分重叠.本文基于上述光谱重叠特性,构筑了以β-NaYF4:Yb,Er为能量给体、TRITC为能量受体的发光共振能量转移(LRET)体系.TRITC分子通过静电作用紧密吸附于纳米晶表面,其较近距离的相互作用利于提高LRET效率和体系的稳定性.在980nm近红外光激发下,LRET过程使NaYF4:Yb,Er位于539nm的上转换发光减弱,同时可观察到TRITC染料分子的发光.对发光寿命的研究也证实了β-NaYF4:Yb,Er到TRITC的能量传递.  相似文献   

11.
Lanthanide-based luminescence resonance energy transfer (LRET) can be used as a tool to enhance lanthanide emission for time-resolved cellular imaging applications. By shortening lanthanide emission lifetimes whilst providing an alternative radiative pathway to the formally forbidden, weak lanthanide-only emission, the photon flux of such systems is increased. With this aim in mind, we investigated energy transfer in differently spaced donor–acceptor terbium–rhodamine pairs with the LRET “on” (low pH) and LRET “off” (high pH). Results informed the design, preparation and characterisation of a compound containing terbium, a spectrally-matched pH-responsive fluorophore and a receptor-targeting group. By combining these elements, we observed switchable LRET, where the targeting group sensitises lanthanide emission, resulting in an energy transfer to the rhodamine dye with an efficiency of E = 0.53. This strategy can be used to increase lanthanide emission rates for brighter optical probes.

A pH-sensitive luminescence resonance energy transfer (LRET) was explored as a method to increase photon flux in a terbium-rhodamine-receptor targeting group construct. At low pH, long-lived dye emission and shorter terbium lifetimes were observed.  相似文献   

12.
Organic nanoparticles consisting of 3,3′‐diethylthiacyanine (TC) and ethidium (ETD) dyes are synthesized by ion‐association between the cationic dye mixture (10 % ETD doping) and the tetrakis(4‐fluorophenyl)borate (TFPB) anion, in the presence of a neutral stabilizing polymer, in aqueous solution. Doping with ETD makes the particle size smaller than without doping. Size tuning can also be conducted by varying the molar ratio (ρ) of the loaded anion to the cationic dyes. The fluorescence spectrum of TC shows good overlap with the absorption of ETD in the 450–600 nm wavelength region, so efficient excitation‐energy transfer from TC (donor) to ETD (acceptor) is observed, yielding organic nanoparticles whose fluorescence colours are tunable. Upon ETD doping, the emission colour changes significantly from greenish‐blue to reddish or whitish. This change is mainly dependent on ρ. For the doped nanoparticle sample with ρ=1, the intensity of fluorescence ascribed to ETD is ~150‐fold higher than that from pure ETD nanoparticles (efficient antenna effect). Non‐radiative Förster resonance‐energy transfer (FRET) is the dominant mechanism for the ETD fluorescence enhancement. The organic nanoparticles of a binary dye system fabricated by the ion‐association method act as efficient light‐harvesting antennae, which are capable of transferring light energy to the dopant acceptors in very close proximity to the donors, and can have multi‐wavelength emission colours with high fluorescence quantum yields.  相似文献   

13.
We designed two near-infrared (NIR) lanthanide complexes [( L )2-Nd(NO3)3] ( L =TPE2-BPY for 1 , TPE-BPY for 2 ) by employing aggregation-induced emission (AIE)-active tetraphenylethylene (TPE) derivatives as sensitizers, which possessed matched energy to NdIII, prevented competitive deactivation under aggregation, even shifted the excitation window toward 600 nm by twisted intramolecular charge transfer. Furthermore, benefiting from the 4 f electron shielding effect and antenna effect, the enhanced excitation energies of the AIE-active sensitizers by structural rigidification transferred into the inert NdIII excited state through 3LMCT, affording the first aggregation-induced phosphorescence enhancement (AIPE)-active discrete NIR-emitting lanthanide complexes. As 1 equipped with more AIE-active TPE than 2 , L →Nd energy transfer efficiency in the former was higher than that in the latter under the same conditions. Consequently, the crystal of 1 exhibited one of the longest lifetimes (9.69 μs) among NdIII-based complexes containing C−H bonds.  相似文献   

14.
稀土因其特殊的物理和化学性质,在信息技术、能源技术、生物技术等高科技领域及国防建设等方面都起着非常重要的作用,中国作为稀土大国,十分重视对稀土材料的研究和开发。稀土离子近红外发光(750~1700 nm)在激光和光纤通讯、医学诊断、免疫分析等热门领域的潜在应用,受到了科研人员的极大关注。稀土离子本身发光极弱,通过分子内传能有机配体可以敏化稀土离子发光,但稀土配合物常受外界干扰,其稳定性较差,若将其与凝胶、介孔材料、离子液体等无机基质复合,得到具有良好光、热稳定性和化学稳定性的有机/无机杂化材料。总结了近些年来近红外发光稀土配合物及近红外发光稀土杂化材料的研究进展,并对其发展前景进行了展望。  相似文献   

15.
The promising ligand candidates for the energy transfer luminescence measurements of lanthanide (Ln) chelates on aqueous matrices are first proposed. The ligands are; 2[(2-amino-5-methyl-phenoxy)methyl]-6-methoxy-8-aminoquinoline-N,N,N',N'-tetraacetate (Quin 2), 1,2-bis(2-amino-phenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA), and 1,2-bis(2-amino-5-fluoro-phenoxy)ethane-N,N,N',N'-tetraacetate (F-BAPTA). The Ln-chelates of these aromatic polyaminocarboxylates show the sensitized emission which results from efficient ligand-centered light absorption, and the interesting selectivity is seen; BAPTA and F-BAPTA form the luminescent chelates only with Tb(III) and Dy(III) ions, whereas the emission from Sm(III) and Eu(III) ions is greatly sensitized with Quin 2. The sufficient emission intensity can be obtained even in slightly alkaline aqueous solutions without any addition of surfactants or organic solvents. These octadentate ligands are fairly capable of shielding central Ln ions from quenching by surrounding water molecules. The luminescence enhancement factors are 1600 for Tb(III) ion with BAPTA (em.544 nm) and 1380 for Eu(III) ion with Quin 2 (em. 615 nm), respectively, being relative to their aqueous chloride solutions.  相似文献   

16.
Lanthanide chelates are excellent labels in ligand binding assays due to their long lifetime fluorescence, which enables efficient background reduction using time-resolved measurement. In separation-free homogeneous assays, however, some compounds in the sample may cause quenching of the lanthanide fluorescence and extra steps are required before these samples can be measured. In this study we have evaluated whether europium chelates packed inside a polystyrene nanoparticle are better protected from the environment than individual Eu(III)-chelates, and do these particles have higher tolerance against known interfering compounds (bivalent metal ions and variation of pH). We also tested whether metal ions had any effect on a fluorescence resonance energy transfer (FRET) based detection of a bioaffinity binding reaction. The presence of metal ions or variation of pH did not affect the fluorescence of the Eu(III)-chelate dyed nanoparticles, while significant decrease of the fluorescence was detected with a 9-dentate Eu(III)-chelate. Metal ions also decreased the fluorescence lifetime of the 9-dentate Eu(III)-chelate from 0.960 to 0.050 ms. Coloured metal ions caused a minor decrease in sensitised emission generated by FRET when Eu(III)-chelate dyed nanoparticles were used as donor labels. The decreased signal was due to the absorption of the sensitised emission by the coloured metal ions, since the metal ions had no effect on the lifetime of the sensitised emission. Thus the Eu(III)-chelate dyed nanoparticles are preferred labels in homogeneous bioaffinity assays, when interfering compounds are known to be present.  相似文献   

17.
Oliva Mde L  Olsina RA  Masi AN 《The Analyst》2005,130(9):1312-1317
In this work a simple and sensitive fluorimetric method for determination of salbutamol (4-[2-(tert-butylamino)-1-hydroxyethyl]-2-(hydroxymethyl) phenol) using an Eu enhanced signal was developed. The employed methodology is based on the formation of a ternary complex formed with Eu, salbutamol and trioctylphosphine oxide (TOPO). Intermolecular transfer of energy from the excited organic molecule to the lanthanide followed by lanthanide emission is responsible for excitation of the lanthanide ion in complex solutions and fluorescent enhancement. The luminescence properties of the ternary complex formed with TOPO and optimum formation conditions were investigated. The calibration curve is linear in the range between 6.92-180 microg l(-1) of salbutamol. The detection limit was 2.31 microg l(-1). Common excipients for these formulations were not found to interfere. A proposed method for the assay in commercial aerosols and nebulizer solutions containing salbutamol was applied with very good precision.  相似文献   

18.
The photophysical process of lanthanide(III) ion is based on the 4f-4f transition, which is the Laporte forbidden with narrow emission band and long emission lifetime. The 4f-4f emission process is affected by introducing aromatic organic ligands. In this review, recent progress of one-, two-, and three-dimensional polymer-typed lanthanide complexes, luminescent lanthanide coordination polymers, are focused for physical and chemical sensing applications. Their changeable luminescence depended on the physical and chemical environments come from the energy transfer between lanthanide(III) ions and aromatic organic ligands. The characteristic physical (temperature, pressure, pH and mechanical force) and chemical (adsorption of metal ions and molecules) sensitive luminescence of lanthanide coordination polymers are useful for future sensing applications.  相似文献   

19.
β-NaYF4:Yb,Er nanoparticles (NPs) are one of the most efficient upconversion materials, which can convert near-infrared light to higher-energy light through multiple photon absorptions or energy transfer. In addition, they may be attractive alternative donors for luminescence resonance energy transfer (LRET) studies, because of their sharp absorption and emission profiles, high quantum yields, large anti-stokes shifts, long lifetime, low toxicity, and superior photo-stability. In principle, many problems of...  相似文献   

20.
Lanthanide complexes have wide applications in biochemical research and biomedical imaging. We have designed and synthesized a new class of macrocyclic lanthanide chelates, Ln/DTPA-PDA-C(n), for cell labeling and magnetic resonance imaging (MRI) applications. Two lipophilic Gd3+ complexes, Gd/DTPA-PDA-C(n) (n = 10, 12), labeled a number of cultured mammalian cells noninvasively at concentrations as low as a few micromolar. Cells took up these agents rapidly and showed robust intensity increases in T1-weighed MR images. Labeled cells showed normal morphology and doubling time as control cells. In addition to cultured cells, these agents also labeled primary cells in tissues such as dissected pancreatic islets. To study the mechanism of cellular uptake, we applied the technique of diffusion enhanced fluorescence resonance energy transfer (DEFRET) to determine the cellular localization of these lipophilic lanthanide complexes. After loading cells with a luminescent complex, Tb/DTPA-PDA-C10, we observed DEFRET between the Tb3+ complex and extracellular, but not intracellular, calcein. We concluded that these cyclic lanthanide complexes label cells by inserting two hydrophobic alkyl chains into cell membranes with the hydrophilic metal binding site facing the extracellular medium. As the first imaging application of these macrocyclic lanthanide chelates, we labeled insulin secreting beta-cells with Gd/DTPA-PDA-C12. Labeled cells were encapsulated in hollow fibers and were implanted in a nude mouse. MR imaging of implanted beta-cells showed that these cells could be followed in vivo for up to two weeks. The combined advantages of this new class of macrocyclic contrast agents ensure future imaging applications to track cell movement and localization in different biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号